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The long-term tradition of urban and regional planning recently 
has come under criticism. We are still unable to answer the fun-
damental questions regarding the role of planning in forming and 
confining the urban and regional areas, and empirical research 
raises strong doubts regarding the usefulness of traditional statu-
tory planning work (Alfasi et al. 2012). New ideas focus around 
adaptive planning: Instead of establishing strict land-use maps 
of the future, the plan should direct the inherent dynamics of 
the complex urban system and avoid unsolicited development. 
Moroni (2007) specifically calls for public authorities to allow 
landowners to make use of their land within a framework of 
common rules, and plan their own actions—in other words, to 
substitute a top-down framework with a bottom-up approach. An 
example of these rules is the “urban codes” (Alfasi and Portugali 
2007, Salingaros 2010) that specify principles for the development 
of urban elements based on their spatial adjacency. Development 
can take place anywhere by anyone, as long as the urban codes 
remain inviolate. It is important to note that urban codes are not 
dogmatic: According to the very spirit of the bottom-up approach, 
they require calibration in local context. 

The new views of planning are much closer to the modelers’ 
view of urban development as a complex self-organizing process. 
The application of the complexity theory in planning reality is 
based on the extensive use of geographic information systems 
(GIS) and high-resolution spatially explicit modeling. GIS and 
models provide the common platform for both the professional 
planners and the general public thus facilitating participation 
planning and democratic decision making. Urban and regional 
plans are based on numerous GIS layers that contain rich spatial 
and nonspatial information on population and infrastructure that 
should be translated into planning constraints; householders’, 
businesses,’ and developers’ preferences; and scenarios of possible 
development. Geographic information on the land uses, residen-
tial patterns, or transportation thus becomes a basis for spatially 
explicit dynamic models of urban and regional development. 

The recent generation of the urban models hopefully will enable 
merging between the planner’s top-down view of “desirable future” 
with the “possible futures” that are constructed by the modeler in 
the bottom-up fashion (Benenson and Torrens 2004, Jiang and 
Jia 2011). This indicates that the top-down and the bottom-up 
views do not contradict but support and complement each other 
in spatial planning and decision-making.  

This special issue brought together the experts across the 
fields of planning on the one hand and of urban and regional 
modeling on the other to address “desirable” and “possible” urban 
and regional futures, and to present the state-of-the-art models 
in the rapidly developing domain of planning-oriented spatially 
explicit urban and regional modeling. Although the authors of 
the papers mainly work in the field of modeling, they all have 
planning practice in mind. The six papers collected in the special 
issue, selected from 18 submissions, all aim at bridging the gap 
between the planning practice and the modeling effort. 

The papers of the issue can be placed into three groups. The 
first two papers address a decentralized urban structure, which is 
fundamental to both modeling and planning. Sohel J. Ahmed, 
Glen Bramley, and Ashraf M. Dewan in “Different Spatial Met-
rics: A Case Study on Dhaka, Bangladesh (1960–2005)” explore 
the remote sensing data for monitoring the rapidly expanding 
megacity of Dhaka, Bangladesh, specifically during 1999 to 2005. 
They quantify spatial and temporal patterns of Dhaka growth and 
demonstrate that the hot spots of change shifted from the central 
toward the north, south, east, and southeast directions. Infill 
development remains substantial all the time and is attributed to 
new jobs and commercial hubs in the city core and the tendency 
to reduce work-home trip time. Dani Broitman and Daniel 
Czamanski in “Polycentric Urban Dynamics—Heterogeneous 
Developers under Certain Planning Restrictions” investigate the 
formation of polycentric cities. The model focuses on the inter-
action between developers and planning authorities. Developers’ 
characteristics such as scale of operations, availability of own 
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capital, and time preferences define their choice of location and 
development investment. The latter, in turn, are influenced by 
planners’ decisions concerning developable locations. The authors 
consider the typical Western city, where the developers belong to 
one of two groups: low-scale developers who have to realize returns 
on their investment immediately and big-scale developers who are 
willing to wait a long time. For this situation, they demonstrate 
that the interaction between the developers and plans results in 
the repeating emergence of new urban subcenters. 

The second two papers rely on agent-based modeling to 
simulate planning or design processes. Verda Kocabas, Suzana 
Dragicevic, and Eugene McCann in “Integration of a GIS-
Bayesian Network Agent-based Model in a Planning Support 
System as Framework for Policy Generation” propose a framework 
for the integration of agent-based models in a planning support 
system aimed at influencing land-use decision-making. They 
construct a Bayesian Network–based Agent System to simulate 
location choice of the households and commercial firms. The 
proposed framework is tested in three land-use change scenarios, 
each associated with different policies for urban development in 
the city of Surrey, British Columbia. Thérèse Steenberghen, Karel 
Dieussaert, Sven Maerivoet, and Karel Spitaels in “SUSTAPARK: 
An Agent-based Model for Simulating Parking Search” propose 
a specifically explicit agent-based model for simulating the local 
parking and traffic situation under different parking-management 
conditions. Based on field surveys, the model represents the activi-
ties and trips of all drivers in a city. Various categories of drivers 
are introduced, and their parking search behavior in different 
conditions is formulated based on the experimental observa-
tions. The model is employed in the city of Leuven, Belgium, 
for estimating parking occupancy, search time, and the distance 
between the parking places and destinations.

The final two papers address participation planning, although 
agent-based modeling again is used as a background tool or sup-
port. Arnab Chakraborty, Sabyasachee Mishra, and Yong Wook 
Kim in “Planning Support Systems and Planning Across Scales: 
Comparing Scenarios Using Multiple Regional Delineations 
and Projections” investigate how the interaction between local 
jurisdictions and higher-level planning decisions can influence 
development outcomes. They consider Montgomery County, 
Maryland, as a case, and leverage a model developed for a larger 
region, i.e., the state of Maryland. Two sets of scenarios are 
considered—one where the county (a local government) freely 
competes with its neighboring jurisdictions for development and 
the other where a state controls the extent of development that 
the county can receive. The scenarios result in different amounts 
of growth in the county. The authors thus conclude that planning 
agencies should include interactions between the legal units at 
different levels of the administrative hierarchy when proposing 
development scenarios. Moira L. Zellner, Leilah B. Lyons, Charles 
J. Hoch, Jennifer Weizeorick, Carl Kunda, and Daniel C. Milz in 
“Modeling, Learning, and Planning Together: An Application of 
Participatory Agent-based Modeling to Environmental Planning” 
consider the role of the stakeholder committees to ensure represen-

tation of diverse interests when planning. Often, these representa-
tives blindly rely on the assessments, usually obtained with the 
computer models, of a plan’s environmental effects. The authors 
developed such a model in regard to the groundwater manage-
ment in the suburban area of Chicago and conducted a series 
of collaborative and developmental meetings with stakeholders 
and planners in a rapidly suburbanizing area facing groundwater 
shortages. Through the models, stakeholders enhanced their 
understanding of complex environmental interactions, jointly 
explored the range of possible outcomes, and suggested model 
modifications. Their collective participation produced a solidarity 
that allowed for new planning strategies to emerge. 

Taken together, the papers of this special issue make an 
important step towards constructing a new planning paradigm 
that will be based on a deep understanding of the city and the 
region as self-organizing dynamic systems, and yet provide the 
tools for governing their development and foreseeing their future 
state. We hope that not only the scholars in urban and regional 
modeling but also those practitioners in planning will find the 
special issue of use. In conclusion, we would like to thank Dr. 
Jochen Albrecht, the former editor of URISA, and Dr. Piyushimita 
(Vonu) Thakuriah, the current editor, for trusting us in the guest 
editing, the authors for working very hard on the revisions, and 
the reviewers for their constructive comments. 
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Introduction
Unprecedented levels of urbanization have been taking place in 
larger megaurban regions of the world (Aguilar and Ward 2003, 
Kraas 2003). Considering the United Nations (UN) megacity 
population threshold of 10 million and more, the number of 
megacities already has reached 19 by 2007, of which 14 are in 
developing countries. Many of the noticeably large megacities 
such as São Paulo, Dhaka, Jakarta, and Mumbai already had 
experienced a population boom by the end of the past century 
as population figures trebled in 30 years (Kötter 2004, Kraas 
2003, Repetti and Prelaz-Droux 2003). A large town of less than 
350,000 in 1951, Dhaka has become the 15th largest megacity of 
the world (Islam 1999, Siddiqui 2004). The population of Dhaka 
would further increase to 19.5 million because of new urban 
expansion triggered by massive rural-urban migration by 2025 
(ibid.). These rapid changes in population and their interaction 
with manmade and natural environment have brought inevitable 
transformation in the socioeconomic, political, and ecological 
processes. The designated metropolitan area or the urban core has 
long been consolidated, yet getting more dense, and becoming 
more congested, while new urban expansion has been encroaching 
on sensitive wetlands and productive farmlands in the fringe and 

periurban areas—even though these areas are subject to flooding 
every summer (Dewan 2009). 

The present Structure Plan1 and the Urban Area Plan2 by 
the Rajdhani Unnayan Kartripakka (RAJUK), the Capital De-
velopment Authority of Dhaka, designate new areas in the fringe 
zones of Dhaka where urban expansion is encouraged. To prevent 
encroachment of areas with high agricultural productivity, zones 
have been declared to accommodate excess runoff originated by 
excessive rainfall in the monsoon season (Islam 1999, RAJUK 
1997). However, the policies associated with urban growth never 
were based on detailed monitoring and analysis of actual urban 
growth dynamics. As a result, they fail to adequately address 
the sustainable growth and management issues in the core and 
fringe areas. 

In recent times, geographic information systems (GIS) and 
remote sensing (RS) have been widely used to evaluate the dynam-
ics of process and patterns of land-use and land-cover change, 
commonly known as LUCC (Angel et al. 2005, Hardin et al. 
2007, Rindfuss 2004, Verburg et al. 2004). Recent integration of 
GIS functionalities with RS tools (i.e., hybrid GIS-RS tools) have 
brought myriad prospects for quantitative analysis of LUCC pat-
terns (Batty 2001, Batty 2005, Goodchild 2005, Kok et al. 2007, 

Exploratory Growth Analysis of a Megacity through 
Different Spatial Metrics: A Case Study on Dhaka, 

Bangladesh (1960–2005)

Sohel J. Ahmed, Glen Bramley and Ashraf M. Dewan

Abstract: Recent advances and greater availability of geographic information systems (GIS) and remote-sensing (RS) technologies 
and data have opened wider possibilities for tackling many challenging issues of urban planning and management in developing 
countries, particularly in detecting, monitoring, analyzing, and modeling land-use and land-cover change (LUCC) patterns. 
Until recently, there has not been much evidence of use of GIS-RS tools in examining or monitoring rapidly expanding megaci-
ties such as Dhaka, the primary city of Bangladesh, that had transformed 4,700 ha of agricultural and low-lying areas to urban 
areas during the period 1999–2005. The objective of this study was to explore and analyze the pattern of urban growth in the 
Dhaka megacity using remote sensing and spatial metrics. Multitemporal land-use/land-cover data have been acquired and used 
to determine urban growth in Dhaka. Using a number of spatial metrics, the study quantified spatial and temporal patterns of 
urban growth in Dhaka from 1960 to 2005. The study revealed that the total urban footprint increased rapidly to 20,551.0 
ha (49.4 percent of the total land mass) in 2005 from 4,631.8 ha (11.1 percent) in 1961. The core hot spot of changes shifted 
from the central toward the north, south, east, and southeast directions in the 1990s and 2000s as exemplified initially by the 
trend surface, and later by the spatial metrics- detecting urban growth and its form in further details. Infill development was 
found to occur substantially even after sufficient consolidation already had taken place, which can be attributed primarily to 
the principal job and commercial hubs being located in the city core and, thus, shorter work-home trip lengths in Dhaka (also 
evident from the proximity and cohesion index). Analyses of patterns of urbanization can be linked to possible factors driving 
massive urban growth and, therefore, may be useful for making informed decisions for future sustainable urban planning and 
management  of Dhaka megacity.
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Masser 2001). Along with improvements in modeling tools and 
techniques, the consistent availability of high-resolution satellite 
images also has become a sound platform to provide up-to-date 
information on spatial and temporal dimensions in the planning 
and management of cities. This advancement of satellite technol-
ogy is significant for rapidly growing urban areas in developing 
countries because of the lack of detailed local administrative in-
formation, technology, and resources required for the monitoring 
and management of urban growth (Masser 2001). Therefore, it 
becomes relatively uncomplicated to detect and quantify urban 
growth pattern with the aid of integrated GIS and RS techniques 
(Kammeier 1996, Masser 2001, Angel et al. 2005, Tana et al. 
2005, Hunga et al. 2006, Kaya and Curran 2006, Rawashdeh 
and Bassam 2006, Dewan and Yamaguchi 2009). This analysis 
through geospatial techniques is of paramount importance for 
the Dhaka megacity because systematic research was nonexistent 
to discern the dynamics of land-use change until very recently 
(Dewan 2008, Dewan et al. 2007, Dewan and Yamaguchi 2009b, 
Jensen and Im 2007, Roy 2008, Talukder and Newman 2003, 
Tawhid 2004). Even though the statistics on land-use dynamics 
is adequate to reveal the location and amount of land-use change 
for a given area, the resulting information is unable to answer the 
dynamics and pattern of urban form (Narumalani et al. 2004). 
To be able to devise more efficient planning and management of 
urban areas and associated environmental degradation, the quan-
tification of the pattern of urban form is of immense importance 
(Civco et al. 2002, Dramstad et al. 2001, Kamusoko and Aniya 
2007, Mcgarigal et al. 2002, Nagendra et al. 2004, Southworth 
et al. 2002, Tzanopoulos and Vogiatzakis 2010). Because Dhaka 
is said to become the world’s third largest megacity by 2020, 
environmental degradation in response to rapid urban growth is 
likely to affect an increasing number of its inhabitants. There-
fore, a study using more sophisticated yet operational tools (e.g., 
spatial metrics) can be of significant help to quantitatively assess 
the pattern of urban form that can assist policy makers and urban 
planners in identifying the human impacts on urban ecosystems 
(Leitao and Ahern 2002). Besides, city planners, economists, 
and resource managers require comprehensive knowledge on 
the structure of a city to make informed decisions and to guide 
sustainable development in a rapidly changing city (Hall et al. 
1995) such as Dhaka.

Considering these facts, the objectives of this paper are to 
explore how Dhaka’s urban expansion has been shaped through 
space and time and to investigate the form and structural changes 
of urban areas. Spatial data along with spatial metrics are employed 
to quantify the pattern of urban form.  

Trend of Urbanization
The level of urbanization of all of Bangladesh was extremely low in 
the 1950s, revealing that only four percent of its total people were 
living in urban areas (see Table 1). This gradually has increased 
to approximately five percent in the 1960s and then shot up very 
rapidly since its independence in 1971. Table 1 suggests that the 
percentage of the urban population of the country reached 23.39 
percent in 2005 from 8.78 percent in 1974 (Cus et al. 2006, Is-
lam 2005). Though the current trend of urban expansion is low 
compared to the 1970s, urban growth continues to be the highest 
in Dhaka (Table 1). This trend of urbanization in other parts of 
the country along with Dhaka is estimated to be responsible for 
an average annual conversion of 809 km2 of agricultural land to 
urban land (BBS 1996). Such a decreasing loss of agricultural land 
is alarming for the country. However, one of the most significant 
causes of Dhaka’s overwhelming growth is the unsustainability 
of its rural economy that forces hundred of thousands of rural 
people to migrate to the cities for improved lifestyles and better 
job opportunities (Dewan and Yamaguchi 2009b). 

The Study Area
All the biggest cities in the world grew either by the sea or by the 
large rivers. In Asia, the dominance of port cities is even greater, 
i.e., 17 of the region’s 20 largest cities are either coastal, on a river 
bank, or in a delta (Moreno et al. 2008). Dhaka, the capital and 
the largest city of Bangladesh, is located in the central region of 
the flat deltaic plain of the three international rivers, the Ganges, 
the Brahmaputra, and the Meghna (shown in Figure 1). It enjoys 
a distinct primacy in the national and regional hierarchy. The 
Dhaka megacity falls under the jurisdiction of the Capital Devel-
opment Authority (RAJUK), which covers nearly  1,530  square  
kilometers. Along with its core area, the Dhaka City Corporation 
area (DCC), it includes four other municipalities (Narayanganj, 
Tongi, Gazipur, and Savar), several cantonments, a large number 

Table 1. Urbanization in Bangladesh and population growth in Dhaka  
Source: BBS 2001, BBS 2003    

Year Total Urban Population Total Population of 
Dhaka City

Percentage of Urban 
Population

Average Annual Growth Rate (%)
All Urban Area Dhaka City

1951 18,19,773 4,11,279 4.33 1.69 1.28

1961 26,40,726 7,18,766 5.19 3.75 5.74
1974 62,73,602 20,68,353 8.78 6.62 8.47
1981 1,35,35,963 34,40,147 15.54 10.63 7.53
1991 2,08,72,204 64,87,459 20.15 5.43 6.55
2001 2,88,08,477 99,12,908 23.39 3.27 4.33
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of rural settlements, massive wetlands areas, enormous agricultural 
lands, rivers, and part of the Modhupur forest of the Pleistocene 
period. Dhaka is mostly known by the boundary of the DCC 
and newly developed fringe areas of the DCC, also known as the 
Dhaka Statistical Metropolitan Area (DSMA) (Islam 2005). Dif-
ferent roles of different institutions, different area connotations, 
and administrative and functional settings of Dhaka under mul-
tiple organizational jurisdictions and responsibilities have made 
urban planning and development management in Dhaka highly 
fragmented and uncoordinated. The present  metrogovernance of 
Dhaka has three types of agencies—national, sectoral, and local. 
Twenty-two ministries  out  of  total  37  and  51  agencies  are  
engaged  in  the  city  development  and  management  of  the  
Dhaka  metropolitan  area  (ibid.). More  information on city 
administration and governance structure can be found in Talukder 
and Newman 2003, Islam 2005. The population density has been 
the highest in the core areas (on average 14,000/km2), while the 
average for the extended development region (the gray-shaded 
area in Figure 1) is only 6,000 persons/km2, reflecting the fact 

that only two-fifths of the megacity area is urban land. For a va-
riety of reasons, including data constraints, this study considers 
the entire Dhaka metropolitan area (the bounding rectangle in 
Figure 1) instead of the whole Dhaka megacity (outer boundary 
in Figure 1).

Dhaka’s unique position as the country’s primary city and 
national administrative and economic capital makes it certain 
that future urbanization in Dhaka faces enormous spatial and 
socioeconomic challenges. In addition to its ever-increasing 
population triggered by rural to urban migration, its unplanned 
urban growth often is accompanied by the growth of massive 
informal settlements, congestion, and environmental pollution 
that are contributing to the degradation of the urban ecosystem. 
As a result, the city is expected to suffer more from flooding, 
waterlogging because of drainage congestion, and heat stress 
stemming from higher portions of built-up areas, higher popula-
tion density, and increased industrial activities (Alam and Rab-
bani 2007). Because Dhaka is located on very flat surfaces, the 
potential sea-level rise also remains an unknown but significant 
threat that could plunge many areas in the coming years. As far 
as the climate vulnerability is concerned, Dhaka is listed on the 
top, scoring highest among Asian cities (World Wild Life 2009). 

Data and Methods
Data Collection
Only recently, more rigorous efforts have been undertaken to 
monitor LUCC in Dhaka. Basak (2006) extracted multitemporal 
land-cover maps using LANDSAT images. His study covered 
the Dhaka Metropolitan Development Planning (DMDP) area. 
However, the outcome of the study suffered from low accuracy, 
and the result has not been calibrated nor validated. Dewan 
and Yamaguchi (2009) made a more precise attempt to identify 
spatiotemporal dynamics of LUCC for the Dhaka metropolitan 
area. They used a number of geospatial datasets from 1960 to 
2005 (Ceo 2010, Dewan 2008, Dewan et al. 2007, Dewan and 
Yamaguchi 2009a, Dewan and Yamaguchi 2009b, Nasa 2010). 
The results of their studies were verified with historical maps and 
also with high-resolution remotely sensed images. Because it is 
the only verified and accessible source of LUCC data (derived 
through institutional arrangement) for most of the DSMA area, 
the bounding box as depicted in Figure 1 was selected as the case 
study area. A brief description on the acquisition and verification 

Figure 1. The study area

Table 2. Description of land use/land cover for Dhaka  
Source: Dewan 2008, Dewan et al. 2007, Dewan and Yamaguchi 2009b      

Land-use/Land-cover Types Description
Built-up Residential, commercial and services, industrial, transportation, roads, mixed urban, and other urban
Bare soil/Landfill sites Exposed soils, landfills sites, and areas of active excavation
Cultivated land Agricultural area, crop fields, fallow lands, and vegetable lands
Vegetation Deciduous forest, mixed forest lands, palms, conifer, scrub, and others
Water bodies River, permanent open water, lakes, ponds, and reservoirs
Wetland/Lowlands Permanent and seasonal wetlands, low-lying areas, marshy land, rills and gully, swamps
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A brief  summary on the data acquisition process for land cover data (adopted from Dewan and Yamaguchi 2009a; 2009b)

ESRI’s ArcGIS package and Leica’s Erdas Imagine software were principally used to obtain land-cover/ land-use classification 
from a number of satellite images and topographic maps. Standard procedures were applied to rectify satellite data and the data 
were projected into the Bangladesh Transverse Mercator (BTM), which is an area-specific standard UTM projection system. All 
the reflective bands were considered and the thermal band was excluded. A first-order polynomial fit was applied and the nearest-
neighbor method was used to resample the data in 30-meter pixel size. The Anderson Land Use and Land Cover Classification 
Scheme I was adopted to examine the LULCC dynamics in the Dhaka metropolitan area. 

Year Source Method of Classification and 
Ground Truthing

Reference Data to measure 
classification accuracy

Classification Accuracy

1960 Topographic maps 
from the Survey of 
Bangladesh (SOB) 
(scale 1:50000)

Topographic maps of 1960 were 
scanned and rectified and then 
digitized, edited, and leveled using 
ArcGIS.

•	 1962 land-use 
classification map by 
Khan and Islam (1964)

•	 Partial large-scale map 
(1:20000) of 1961 by 
SOB

Classification accuracy was 
only visually checked with 
the reference datasets.

1975 LANDSAT MSS 
(March 27, 1975)

•	 A modified version of the 
Anderson Scheme Level I was 
used to get the six categories 
of land use/land cover.

•	 Initially digital numbers 
(DNs) of different land-cover 
types are generated using 
spectral and spatial profiles 
prior to classification. 

•	 60 to 70 training samples 
with different pixel sizes (286 
to 8,914 pixels) were located 
and compared with reference 
datasets using class histogram 
plots. 

•	 Refined training samples 
were used for employing 
a supervised classification 
(maximum likelihood). 

•	 Topographic maps of 
1973 from SOB (scale 
1:50000) 

•	 1975 land-use map (scale 
1:10000) by the Center 
for Urban Studies (CUS)

A total of 125 pixels 
were generated using the 
stratified random sampling 
method and compared with 
the reference dataset at 
pixel-by-pixel basis.
**Overall accuracy: 85.6%
Kappa statistics3: 0.827 

1988 LANDSAT TM 
(February 3, 1988)

Same as above •	 Topographic map 1991 
•	 SPOT panchromatic 

image of 1989 
(resolution 10 m)

Same as above. 
Overall accuracy: 86.4%
Kappa statistics: 0.837

1999 LANDSAT TM 
(February 1, 1999)

Same as above •	 IRS-1D panchromatic 
image 2000 (resolution 
5.8 m) of February 2000

•	 Topographic map 1997 
•	 Dhaka City Guide Map 

2001 (scale 1:20000)

Same as above procedure 
was applied. 
Overall accuracy: 90.4%
Kappa statistics: 0.885

2005 IRS-1D LISS III data  
December  26, 2005)

Same as above Recent images from Google 
Earth and false color com-
posite of the IRS image was 
used to collect 310 reference 
points from the field of which 
110 were used for validation.

The 110 field sample data 
for 2005 were used to assess 
the classification accuracy. 
Overall accuracy: 88.2%
Kappa statistics : 0.856

**  For detailed accuracy for each land use/land cover, see Dewan and Yamaguchi 2009a.
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 Figure 2. Flowchart showing the methodology of the study 

tion matrix and/or with the spatial trend of a change detection 
tool. To be able to understand those questions, a large number 
of landscape metrics are available and being utilized to calculate 
spatial patterns of landscape properties (Kamusoko and Aniya 
2007, Mcgarigal et al. 2002, Nagendra et al. 2004, Southworth 
et al. 2002, Tzanopoulos and Vogiatzakis 2010). However, these 
metrics are not able to characterize the spatial structure of a city, 
particularly historical urban form and pattern (Angel et al. 2007). 
To illustrate and quantify urban structure, the Urban Growth 
Analysis Tool (UGAT) has been employed in this study, which 
is predominantly useful to reveal the structure and form of a city 
(Angel et al. 2005). Because a number of metrics are available 
in UGAT, we used selected metrics pertinent to this study, and 
a brief description of each of the metrics is provided in the fol-
lowing section. 

Urban Manifestation Metrics 
This metric is specifically useful to understand whether a target 
pixel or group of pixels represents urban or not. This is known 
as urbanness. To derive urbanness, the percent of built-up pixels 
in a neighborhood is calculated by putting a one km2 circle in a 
given area. Then the area of all the pixels within a neighborhood 
is calculated and finally divided by the circle size  (see Figure 3). 
Based on this calculation, urbanness can be subdivided into fur-
ther categories such as main core, fringe, and scatter (Angel et al. 
2007). If the largest contiguous group of pixels encompasses more 
than 50 percent built-up pixels (or >50 percent urbanness), it is 
termed urban core. In similar fashion, 30 percent to 50 percent 
urbanness near to the urban core is termed fringe areas, while areas 
with less than 20 percent urbanness are defined as scatter areas. 
A similar concept has been adapted to estimate the urbanness of 
the Dhaka metropolitan area. 

New development metrics 
A number of metrics such as infill, extension, and leapfrog are 
embedded that demonstrate “new developments” for a given area. 
Using two periods of land-use data denoted as t

1
 and t

2
, new de-

velopments of a given area can be quantified. Infill is defined as 
the development of a small area surrounded by existing developed 
land. In other words, a nonurban pixel (e.g., vacant land) at time 
t

1
 is converted to urban pixel at time t

2
. The contiguity of a built-

up area increases with such type of development. Extension, on 
the other hand, is known as the outward development of existing 
urban areas. It is characterized by a nonurban pixel being converted 

process of land use from these sources is provided in the text box. 
Details can be found in Dewan and Yamaguchi (2009a, 2009b).

The multi-temporal LUCC data (Dewan and Yamaguchi 
2009a,b) were obtained through a formal agreement, and the 
product has been considered for further analysis to quantify the 
pattern of urban forms. It is necessary to note that the original 
land-use/land-cover data are in six categories—-urban, agricul-
tural land, wetland, water bodies, forest/ vegetation, and bare 
soil (see Table 2).

Methodology
A flowchart of the overall methods that were used in this study is 
presented in Figure 2. This study used two different approaches to 
quantify urban growth in terms of urban area change and measur-
ing the specific aspect of urban structure. First of all, transition 
matrix, change statistics, and spatial trend of change have been 
employed using the Land Change Modeler Extension of ArcGIS 
(Clarke Lab 2008) to estimate spatial and temporal change in land 
use/land cover. To comprehend the contribution of other land-
cover categories to the urban land of Dhaka, a transition matrix 
may be of particular importance. In addition, several polynomial 
trend surfaces4 were generated to detect the generalized trend of 
spatial change that is specifically useful to discern the pattern of 
change in different land-use/land-cover categories. 

Simple analytical tools such as spatial trend of change or a 
transition matrix allow one to visualize locational changes and 
to derive necessary statistics to infer subjective judgment on the 
dynamics of land-use changes over longer periods. However these 
tools suffer from an unability to answer some fundamental ques-
tions that a city planner needs to know. These are questions such 
as, what is the pattern of urban growth? How has the city evolved 
through different phases of development? How is urban growth 
affecting other land-use categories or what are the implications 
of such changes on overall urban environment? These are dif-
ficult to answer and hard to quantify with a traditional transi-

Figure 3. Urbanness estimation (Angel et al. 2007, Angel et al. 2005)
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to urban and surrounded by no more than 40 percent of existing 
urban pixels (Angel et al. 2007). Urban growth showing a scatter-
ing of new development on isolated tracts separated from other 
areas of vacant land is defined as leapfrog (Ottensmann 1977), 
which is not intersecting the t

1 
urban development. This type of 

urban development results in a highly fragmented landscape in 
the periphery and supposedly has significant effects on the urban 
ecosystem (Angel et al. 2007).

Urban Extent Metrics 
While urbanness and new development metrics are useful to 
discern the spatial pattern of urban development, urban extent 
metrics, on the other hand, are particularly designed to map 
the spatial structure of a city. Using these metrics, we can easily 
perceive what constitutes a city. There are few metrics available 
under this heading. They are built-up area, urbanized area, urban-
ized open space (OS), peripheral OS, and total OS. Each of these 
metrics provides useful information on the structure of a city. A 
short definition of each metric is given in Table 3. 

Table 3. Summary of the metrics used for measuring the urban extent   
Source: Angel et al. 2007, Angel et al. 2005

Metric Definition

Built-up area Completely impervious surface (IS)

Urbanized area
Built-up area, including urbanized Open 
Space (OS)

Urbanized OS
Nonbuilt-up cells, neighborhood com-
prised of more than 50% of
built-up area

Peripheral OS
Nonbuilt-up cells that are within a distance 
of 100 m from built-up
area

Open space (OS) Total urbanized and peripheral OS

Urban footprint Built-up area with OS
 

Attributes of Urban Spatial Structure 
These are a set of metrics that are dedicated to quantify the 
compactness of a city. Urban form and pattern are supposed to 
change with each new development (e.g., an employment hub) in 
a rapidly urbanizing area. This type of activity leads to patches of 
noncontiguous urban cells, resulting in urban growth character-
ized as leapfrog development (Angel et al. 2007, Angel et al. 2005). 
Because widespread leapfrogging reduces a city’s compactness, 
the estimation of compactness can allow a city planner to gauge 
one significant indicator of sustainable urban development. The 
compactness metric ranges from 0 to 1 in which higher values 
indicate more compact shape and vice versa.  Three indices are 
used to measure the compactness of a city—the proximity index, 
the cohesion index, and the compactness index. The proximity 
index is based on the average distance of all points in the urbanized 
area to the centroid of the urbanized area. A circle with an area 

equal to that of the urbanized area is used in proximity calcula-
tion to normalize the distance values. While the cohesion index is 
based on the average distance between all possible pairs of points 
in an urbanized area, the compactness index uses the fraction 
of the shape area that is within an equal area circle centered at 
the shape certroid. Using these three metrics, one can possibly 
examine whether a city’s urban growth is resulting in pervasive 
sprawl, which is crucial information for a city planner.     

Results and Discussion

Initial Land-use/Land-cover Change Analysis

Amount of Change 
Figure 4 shows a summary on land-use/land-cover transforma-
tions from 1960 to 2005 in the Dhaka metropolitan area. The 
LUCC statistics revealed that all land-use categories contributed 
significantly to make the urban land a predominant class, particu-
larly after independence in 1971 (as captured by the land-cover 
data since 1975). 

However, the principle contributors are the agricultural land 
and the wetlands in the recent past (see Figure 5). Prior to inde-
pendence, agricultural land contributed most (more than 500 ha) 
to transform to urban land as the city started to increase its core 
by extending itself to surrounding agricultural land. Historical 
maps, the land use/land cover of 1961, the Master Plan of 1959, 
and literature confirmed that agricultural lands were the sources 
of urban developments during the 1970s (Basak 2006, Dewan 
and Yamaguchi 2009b, Islam 2005).  However, urban growth did 
not gain its present momentum until its independence in 1971 
when Dhaka regained its national capital status from provincial 
capital, and many administrative establishments took place that 
induced a rapid exodus from other districts. The city expanded 
almost six times in area between 1975 and 1988 as compared to 
in 1960–1975 (Dewan and Yamaguchi 2009a). Since then, it 
continues to proliferate at a constant pace of more than 1,000 ha/
year during four observed periods. Apart from urban-land intensi-
fication, the bare-soil/landfill category also increased considerably, 
portraying the pace of land development by the real estate agencies 
(Alam and Morshed 2010). In contrast, other land-use/land-cover 
classes, including water bodies, cultivated land, low-lying lands, 
and vegetation, have been reduced significantly to make way for 
built-up areas. In the 1970s and the 1980s, major development 
occurred mostly on cultivated lands. More than seven percent of 
these lands was converted to urban land, which increased nearly 
13 percent in 1988, while the rate was only 2.23 percent during 
1960–1975. Also, the built-up category expanded at an annual 
rate of 222 ha during 1975–1988, while the growth intensified 
steeply since the later half of the past century—with a rapid rate 
of more than 570 ha/year (see Figure 4). As mentioned earlier, 
agricultural land contributed more in all time periods (shown in 
Figure 5). Recent urban growth is being expanded onto low-lying 
areas, revealing that nearly 20 percent has been transformed to 
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the built-up category from 1988 to 2005. While lowlands were 
not considered for urban development in earlier times, this type 
of land has become the major focus for urban expansion in the 
recent past, which should have a detrimental impact on the hydro-
logical environment of the Dhaka metropolitan area. The major 
cause of lowland development can be explained by the fact that 
rapid population growth in the city requires more shelters, thus 
current urban expansion is being developed in the areas subject 
to seasonal flooding during monsoon.  

Locations of Change
Patterns of urban growth dynamics can be complex and thus 

very difficult to decipher. The trend surface analysis in terms of 
best-fit polynomial can be used to detect the pattern of change 
from multitemporal land-use data. One of the polynomial trend 
surfaces of spatial change is shown in Figure 6. These surface 
maps depict a simulated surface where the values have no special 
significance but denote the generalized locations of transition 
between selected categories from areas with no change to areas 
with significant changes. Such a picture is useful to understand 
the generalized pattern of change and can assist in locating hot 
spots of land-use changes (i.e., areas for further investigation). 

As mentioned earlier, Dhaka’s urban expansion was triggered 
mainly by rapid population growth originating from massive 

Figure 4. Land-use/land-cover change (1960–2005) 

Figure 5. Contribution of other land use/land cover to urban land (1960–2005) 
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rural-urban migration (Islam 1991). Consequently, these people 
not only were consuming existing resources but also forcing the 
rapid transformation of the vegetation and lowlands to urban 
living spaces. After the independence of the country in 1971, 
the growth of Dhaka was confined toward the north. Between 
1975 and 1998, further urban expansion stretched to the north, 
northwest, and west, followed by the construction of roads and 
bridges on the rivers. As a result, a substantial amount of water 
bodies and agricultural lands were transformed into urban lands 
between 1975 and 1992 (Dewan and Yamaguchi 2009b, Islam 
1996, RAJUK 1997, Roy 2008). But in recent years, interest-
ingly (as evident from the land-use/land-cover map of 2005), it 
can be seen that Dhaka has been expanding in all directions by 

incorporating expansive naturally occurring lands such as wetlands 
and lowlands in the vicinity and in more distant areas. Increasing 
amounts of bare-soils transformation from lowlands also provides 
hints of areas of further development (shown in Figure 7). 

New establishments supposedly influenced recent urban 
growth in Dhaka. For example, construction of a 32-kilometer 
flood embankment in 1992 brought noticeable land-use changes 
in the northwest and south parts of the city and a bridge on the 
river Buriganga in 2001 caused major nonurban lands to become 
urban. These are reflected in the trend surface map for 1999–2005 
(see Figure 6) where central Dhaka looks consolidated and is not 
experiencing significant change, while core hot spots of changes 
shifted from the central toward north, south, east, and south-

Figure 6. Polynomial trend surface showing spatial trend of change in Dhaka



URISA Journal • Ahmed, Bramley, Dewan 17

east directions in the 1990s and 2000s (third and fourth map, 
respectively, counterclockwise). Old maps and a number of field 
visits (Dewan and Yamaguchi 2009a) suggest that unplanned 
development is taking place to the east and northeast areas with 
the construction of new roads and services.

Dewan and Yamaguchi (2009a,b) pointed out that there 
was an uneven growth pattern in some directions during these 
periods. Both isolated and edge developments have become major 
features in the peripheral locations that have made the task harder 
for service-providing agencies to keep up the urban amenities in 
pace with the rapid urbanization of Dhaka. This lead to many 
environmental problems. For instance, the city becomes inun-
dated during the monsoon season every year and waterlogging 
becomes a normal phenomenon with high flood risk potential 
because of the consistent encroachment and transformation of 
water bodies, wetlands, and lowland areas (Alam and Rabbani 
2007, Dewan 2008, Huq 1999, Nishat et al. 2000). Furthermore, 
a large number of migrants taking their shelters in slum areas 
as housing is an acute problem in the city. Recent slum surveys 
confirm this hypothesis. For example, the number of people in 
slums already has doubled in a decade, revealing that the current 
slum population in Dhaka reached 3.4 million in 2006 from 1.5 
million in 1995 (CUS et al. 2005). These slums, in most cases, 
are built near riverbanks and in areas highly vulnerable to envi-
ronmental disasters. Not surprisingly, most of these slum dwellers 
are the ones most vulnerable when disasters such as floods strike 

(Alam and Rabbani 2007, Cus et al. 2006, Islam 1999, Islam 
2005, WB 2007).

Analysis of Urban Form and 
Structure  
Urban Manifestation 
The urban area of Dhaka has been explored by the manifestation 
metrics in terms of urban core, fringe, and scatter development 
based on the proportion of urbanness (see Figure 8). It is quite 
understandable from 1960 data that the city did not have any 
significant fringe and scatter developments because of its position 
as provincial capital. After the partition of India and Pakistan 
in 1947, there was more interest to have new administrative 
establishments rather than urban development. This lead to 
the creation of a Central Business District (CBD) and formal 
residential areas in the northwestern side of the city core. The 
city experienced major changes after the independence in 1971, 
resulting in extension and scatter developments in the 1970s. 

 The city continued to attract more people as time progressed 
and remained the primary city of Bangladesh. Major urban de-
velopments were confined to the land free from inundation until 
1990s. Figure 8 also shows that the urban fringe development 
was the highest in 1975, while current trend while current trend 
exhibit more scattering growth. Because of the absence of strict 
planning control, the city started to become more fragmented with 

Figure 7. Changes from different land uses to urban (1988–2005)
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more scattered development by the turn of this century, which are 
thought to have tremendous impact on the proper functioning 
of the ecosystem ( Huq 1999, Nishat 2000). 

New Development Classification Metrics
A timescale exploration over Dhaka’s evolution in terms of 
urban form and pattern is illustrated by Figure 9 and Table 4. 
Dhaka experienced its biggest leapfrog development once its 
status changed from provincial capital to national capital during 
the 1960–1975 period. Since then, extension of existing urban 
core development stretched while infill development remained 
relatively smaller. Leapfrogging started to take bigger proportions 
during the late 1990s when the main city core was consolidated, 
followed by higher land prices.  

Little information is available to compare the results of this 
study with other cities in the world as published documents 
have not considered similar metrics. Attempt has been made 
to compare these outcomes with those already available for 
Bangkok, Thailand, and Minneapolis, Minnesota (Angel et al. 
2007), so that the pattern and structure of Dhaka can be better 
understood. This has been accomplished without going further 

into exploring or comparing the nature of the policy, physical, 
and socioeconomic structures and the changes of the concerned 
cities. The infill development in Dhaka is found to be lower than 
the infill development of both cities: Bangkok (27 percent) and 
Minneapolis (37 percent) while the extension of urban land has 
produced similar proportions during the time t4–t5 compared 
to that of Bangkok (63 percent) and Minneapolis (61 percent). 
One outstanding outcome is the leapfrogging of Dhaka, which 
is much higher than both cities (see Table 4). This clearly shows 
that Dhaka’s recent urban expansion is a result of isolated land 
developments away from the urban core. This contradicts the 
findings of Richardson et al. (2000) that cities in developing 
countries are becoming more compact. In the case of Dhaka, 
though the city has a trend to compactness in an earlier time, the 
recent trend is toward dispersion through leapfrog development.

Urban Extent Metrics 
Summary statistics on urban extent metrics has been calculated 
for a total timescale 1960–2005 in percentages (shown in Table 
5). This resulted in sharp differences in terms of statistics.  An-
nual average conversion to urban areas has been 353.874 ha for 

Figure 8. Urban manifestation metric for Dhaka (1960–2005)
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the total timescale while that has been higher than 216 ha for 
the period 1988–2005 (shown in Table 5). Even though the 
amount of urbanized area (that includes built-up area and open 
space within the urban core) has escalated over both timescales, 
the amount of urban open space has depleted substantially in 
both cases. This event happened similarly for peripheral open 
spaces as the urban core continued to expand and leapfrog to the 
peripheral (see Figure 10). This has resulted in the rapid decline 
of open spaces from 42 percent of open spaces to about eight 
percent in the late 20th century. This has been in stark contrast 
to the findings for Bangkok where open space has increased by 
two percent and in Minneapolis where open space has declined 
only slightly (0.1 percent)  (Angel et al. 2007).

Attributes of Urban Spatial Structure
 The spatial structure of the city can be estimated in terms of 
proximity, cohesion, and the compactness index (see Table 6). The 

Figure 9. Urban form metrics in Dhaka (1960–2005) 

analysis revealed that proximity and the cohesion index are con-
sistently higher since 1960 except for the year 1975. This is true 
for the average distance between all pairs of urban cells (shown 
in Table 6). Looking into the spatial size of Dhaka’s urban land 
in 1960 would clear up any confusion as until then, it had been 
a small compact town. But since Dhaka’s independence in 1971, 
its urban footprint has become fragmented by outward exten-
sion and leapfrogging, thus increasing the average travel distance 
and lowered index value in 1975. Compactness had been found 
lower compared to that in 1960 for the edges of built-up areas 
expanded, resulting in more urbanized open space and making 
it less compact.  But since then, it has started to increase as built-
up areas started to consolidate in most areas, thus reducing the 
average travel distance. Bangkok has been found less compact 
than Dhaka (0.44 in 1994 and 0.51 in 2002), while Minneapolis 
has been more consolidated (0.77 in 1992 and 0.81 in 2001) 
(Angel et al. 2007).
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Concluding Remarks
The objective of this study was to quantify the urban form and 
structure of Dhaka using multitemporal land-use/land-cover 
data since 1960. A variety of spatial metrics were employed 
to discern form and pattern of urban change. Using UGAT, a 
number of metrics were calculated to reveal the structure of the 
city.  The results revealed that Dhaka experienced and witnessed 
rapid conversion of agricultural and low-lying areas in the recent 
past. Consequently, urban areas have been increased to a greater 
extent. The total urban footprint quickly grew to 20,551.0 ha 
(49.4 percent of the total land mass) in 2005 from 4,631.8 ha 
(11.1 percent) in 1961—converting 3,000 ha of agricultural 
land during 1975–1988 alone. Although the initial growth was 
confined to the northern part of the city core, core hot spots of 
changes shifted from the central toward the north, south, east, 
and southeast directions in the 1990s and 2000s as exemplified 
initially by the trend surface and later by the tables and maps 

Table 4. Urban form metrics of Dhaka (1960–2005) 

Metrics t1-t2
(1960–1975)

t2-t3
(1975–1988)

t3-t4
(1988–1999)

t4-t5
(1999–2005)

New
Urban
Growth

ha 2411.910 6608.610 6885.450 6920.730

% 100.00 100.00 100.00 100.00

Infill
ha 266.67 978.66 1468.53 1467.00

% 11.06 14.81 21.33 21.20

Extension
ha 1173.60 4720.59 5012.73 4517.28

% 48.66 71.43 72.80 65.27

Leapfrog
ha 971.64 909.36 404.19 936.45

% 40.29 13.76 5.87 13.53

Table 5. Metrics for measuring urban extent of Dhaka (1960–2005) 

Metrics
t1
(1960)

t2
(1975)

t3
(1988)

t4
(1999)

t5
(2005)

Built-up Area
71.80 57.59 77.65 91.70 91.44

Urbanized Area
75.89 64.55 81.56 93.53 92.93

Urbanized OS
4.08 6.95 3.91 1.83 1.49

Urban Footprint
100.00 100.00 100.00 100.00 100.00

Peripheral OS
24.11 35.45 18.44 6.47 7.06

Open Space
28.19 42.40 22.35 8.30 8.56

and also confirmed by previous literature. Locations of these 
changes are further explored with UGAT tools. Nevertheless infill 
development continues and stays substantial even after sufficient 
consolidation already had taken place, which can be attributed 
mainly to the nonshifting nature of principal jobs and the com-
mercial hub located here and shorter work-home trip lengths in 
Dhaka (also evident from the proximity and cohesion index). 
This already has placed a huge strain on inner open spaces and 
these are continuously dwindling. The most occurring changes 
are taking place through the extension of existing urban footprints 
while leapfrogging also is taking a fair share. 

These are useful insights for city planners for the city who do 
not have up-to-date data or information over the rapid transforma-
tion in LUCC that Dhaka is experiencing. With the absence of 
a reliable, up-to-date, accurate city land-use database for Dhaka, 
such land-use maps (as used in this study) can assist as efficient 
instruments for the urban development information system, 
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which seems a prerequisite to land-use planners and decision 
makers for sustainable management and growth of an extended 
megacity region such as greater Dhaka. This explorative analysis 
with the urban growth metrics (UGAT) has been helpful in look-
ing into the changing urban form of Dhaka for more than nearly 
half a century. It provides some clues on how the city core has 
expanded over time and fragmented other land uses previously 
found dominant, plus when and where leapfrogging has been 
acting as seeds of growth in later periods. These insights will as-
sist in making realistic simulations for Dhaka in future scenario 
analyses made by researchers. More of such applications means 
better assistance to planners and decision makers in these countries 
to obtain a better knowledge about urban land-use dynamics and 
the pattern of urban growth. Recent urban growth also is associ-
ated with the massive land speculation, especially in the fringe 
of suburban areas. Soaring land prices coupled with increasing 
demand for housing and land development has outweighed the 

Figure 10. Urban extent metrics for Dhaka (1960–2005) 

Table 6. Attributes of urban spatial structure for Dhaka (1960–2005)

Metrics 1960 1975 1988 1999 2005

Proximity Index 0.77 0.65 0.76 0.78 0.82

Cohesion Index 0.74 0.63 0.75 0.77 0.81

Compactness index 0.74 0.58 0.65 0.66 0.68

high value of some agricultural lands in the fringe, with some of 
this land becoming rapidly urban through individual and property 
developers (Dewan 2009a). There might be factors other than 
land price and speculation influencing such complex processes in 
the suburban areas and this, therefore, necessitates detailed study 
that can explore underlying drivers determining urban growth in 
the Dhaka megacity. 

Notes

1Assuming the population at 2015 as 15 million, this is a 20-year 
(1995–2015) strategy plan for urban development within the 
Capital City Development Authority’s jurisdiction. It consists 
of a report with supporting policy maps (RAJUK 1997). 

2On the other hand, this is an interim midterm plan from 1995 to 
2005 and covers a smaller area than the former, e.g., existing 
metropolitan area of Dhaka (RAJUK 1997).
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3Kappa coefficient is a statistical measure of interannotator agree-
ment for qualitative (categorical) items. It generally is thought 
to be a more robust measure than simple percent agreement 
calculation for it takes into account the agreement occurring 
by chance.

4The procedure is not without drawbacks and the main ones are: 
difficult to interpret individual terms, hugely biased to edge 
effects, and rarely goes through data points (i.e., inexact in-
terpolator). Nevertheless, it has some practical rationale for 
wider applications: easy to compute and hides finer pockets 
of variations to display general or average trends across the 
landscape (by detrending the data) (Smith et al. 2007).
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Introduction
Classical models of urban spatial structure (Alonso 1964, Mills 
1967, Muth 1969) depict cities as monocentric. They view real 
cities at a crude resolution only. To this end, they utilize aver-
age densities (Alperovich and Deutsch 2000). In these models, 
people and activities compete for space and locations in terms 
of proximity to a single city center. The competition leads to 
monotonically declining land rents and density from the central 
business district (CBD) outward (Fujita 1989).  Such models are 
hard-pressed to explain the formation of modern cities with the 
typical polycentric structure. 

Recent research concerned with urban spatial dynamics 
suggests that discontinuity in space and nonuniformity in time 
are prominent characteristics of modern urban development 
(Benguigui et al. 2001a, 2001b, 2004a, 2004b, 2006).  Thus, for 
example, the footprint of the built area in the Tel Aviv conurba-

Polycentric Urban Dynamics—Heterogeneous Developers 
under Certain Planning Restrictions

Dani Broitman and Daniel Czamanski

Abstract: The paper is concerned with the formation of polycentric cities. The model we introduce includes two types of developers 
and planning authorities. Developers’ characteristics, such as scale of operations, availability of own capital, and time preferences, 
lead to various decisions concerning the choice of location and development investment. They are influenced by planners’ deci-
sions concerning developable locations. We present a cellular automaton model that simulates the interaction of various types of 
developers and planning authorities. We demonstrate that the joint dynamics of decisions by impatient, low-scale developers with 
others who are willing to wait a long time to realize returns on their investment can lead to the creation of new urban subcenters.

tion displays discontinuity that appears as a result of apparent 
leapfrogging (see Figure 1). 

Furthermore, the evolution of high-rise buildings represents 
evidence contrary to the monocentric paradigm. There is some 
evidence that clustering of high-rise buildings over time is weaken-
ing (Golan 2009). Quantitative measures indicate that no single 
urban center of attraction is present in the city (Czamanski and 
Roth 2011). Moreover, new high-rise building clusters seem to 
arise over time in zones previously not intensively developed 
(Golan 2009).

In an effort to explain the apparent discontinuities in the spa-
tial evolution of built areas, we argue that the polycentric structure 
results from the behavior of developers that incorporate the prefer-
ences of consumers (Henderson et al. 2008) together with measures 
taken by planning authorities. The planning actions consist of land-
use plans intended to prevent unwanted urban development in areas 
reserved for nature, parks, recreation, and agriculture (Furst et al. 
2010). The effectiveness of land-use plans is related to the ability of 
planning boards to withstand the pressure of developers to convert 
land that is not intended for development and was purchased by 
developers at a low market price into high-proceeds developable 
land (Lai et al. 2008). While the ability of developers to influence 
planning boards and to obtain planning variances varies among 
countries, it is a universal phenomenon. As we shall demonstrate in 
this paper, the resistance of planning boards is directly responsible 
for sprawl in the form of leapfrogging.

The overall purpose of this paper is to incorporate planning 
decisions into an agent-based simulation model that yields realistic 
urban spatial structures. It is our claim that the combined effect 
of urban planning policies and regulations and the choices of 
developers searching for real estate projects can explain much of 
the urban spatiotemporal evolution. Firm characteristics, and in 
particular the time impatience of land developers, interacts with 
time-related municipal development strategies and, in turn, affects 
the urban spatial structure dynamics.Figure 1.  The temporal evolution of Tel-Aviv’s footprint
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The rest of this paper consists of three more sections. The 
next section contains a description of our model. The following 
section present results of model simulations. The last section pres-
ents discussion of our results and suggestions for future research.

Model Description
We present an agent-based model with two main types of agents. 
Planning authority sets rules concerning the location and in-
tensity of developable land. We assume that planning building 
restrictions grow with distance from the central business district 
(CBD). These restrictions are expressed as a monotonically 
increasing function of the time required for obtaining construc-
tion permits as the distance from the CBD increases. From the 
developers’ point of view, this is the time between the acquisi-
tion of property rights and the realization of returns. We define 
it as the characteristic time of a given location. Developers are 
the second type of agents. They select preferred locations for 
buildings and the intensity, or height, of buildings. We define 
two types of real estate developers. The first type is an impatient 
developer, characterized by small-scale operations resulting in low 
and medium-height buildings and a preference for immediate 
returns on investment, thus “small” developers. The second type 
is a patient developer, characterized by financial capabilities, an 
ability to wait long periods to maximize returns on investment, 
and large-scale development operations (high-rise buildings), 
thus “big” developers. 

As we shall illustrate in the following, the presence of one 
homogenous group of “small” developers results in an Alonso-
type monocentric city. Most cities, however, display a polycentric 
structure (Czamanski and Roth 2011). In our model, we generate 
polycentric structure by including a mix of small developers and 
large patient developers. As long as land is available for develop-
ment within a radius with characteristic time that is below or 
equal to the developers’ time impatience, building will proceed 
and the competition for accessibility will generate an Alonso-type 
city. This circular-shaped monocentric city has a radius directly 
related to the characteristic time function imposed by the planning 
authorities. As available land in the monocentric city is exhausted, 
pent-up demand will cause willingness to pay to rise. Some of 
the small developers with a preference for immediate returns 
on investments will leave the sector of land development and 
turn to other activities. A period of building stagnation without 
significant construction activity will follow.

However, some large developers, patient enough to wait for 
long-term returns, will speculate and purchase low-priced land 
for future development. This land is in areas with high charac-
teristic time. They will hold the land until the characteristic time 
will elapse and building will be possible. By waiting it out, the 
big developers will achieve a return on investment that is higher 
than in the core of the city. Also, they will purchase old buildings 
within the pale of the CBD that can be demolished and thus 
make land available for high-rise modern structures. Because of 
historic preservation constraints, limited and outdated urban 

infrastructure, and opposition from neighbors, the characteristic 
time of these sites is high. 

When many parcels of speculatively bought land are 
concentrated in a particular region, the planning authorities 
acknowledge that the region is being urbanized despite the high 
characteristic times imposed in it and, with some probability, 
reduce the characteristic time around this new development 
pole. Small developers with a preference for immediate returns 
on investments are attracted to the region and start building as 
well. A new Alonso-type urban center will be created. 

The timing of the peaks and troughs in construction activities 
is a function of the size and the rate of change in the characteristic 
time. The number, size, and speed of construction of subcenters 
depend on the relative number of the two types of developers and 
the city development policies regarding the characteristic time. 
Big developers get out of development business and get back, into 
both speculative and construction activities, following the external 
economic cycles. There may be a delay and each type of activity 
can depend on different characteristics of the cycle.

Our spatial, agent-based simulation model displays the city 
spatial configuration in each time step. The city is defined as a 
square grid of cells, each of which represents a single parcel of 
land. The cells’ status in any given time step is characterized by 
several attributes:

Characteristic Time
 The time delay imposed on each specific cell by city authorities 
on potential developers from the time that property rights are 
purchased and until the project construction and revenue realiza-
tions. This attribute is a function of location. Also, characteristic 
time increases with height. (See Figure 2.)

Cell Use Status 
One of the following three statuses is possible: available (not de-
veloped), purchased (waiting for the characteristic time elapsing 
and, therefore, not developed yet), or developed (an occupied 
cell with a building standing in it). Status can change over time. 

Figure 2. City’s transect at the initial stage—single CBD and 
increasing characteristic time 
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Height  
Zero if nonbuilt; otherwise, the height of the constructed building.

In the initial time moment, the city is just a CBD represented 
by a single building located in one cell in the center of the grid. All 
other cells are available for development. The initial distribution 
of the characteristic time reflects the municipality’s policy and 
increases monotonically according to its distance from the CBD.

The attractiveness of a location is expressed by the willingness 
to pay (WTP) for a dwelling unit in that site by residents. The 
willingness to pay declines from the city’s center and determines 
the revenues and profits of developers and, therefore, the price 
of land. Both parameters (WTP and land price) are assumed to 
reach local maxima in high-rise buildings, proportionally to their 
heights, decaying linearly as the distance from them increases. In 
the initial stage, both values are defined from the single CBD out-
ward in all directions. In this case, the willingness to pay and the 
land value local maxima are absolute maxima as well at the CBD.

There are a predefined number of real estate entrepreneurs 
that are active in the city: N “small” developers and M “big” 
developers. “Small” developers are characterized by a fixed upper 
time T. They seek to maximize profits in construction projects 
only if they could be finished in a time horizon of T years. From 
their viewpoint, a suitable parcel is one in which T<t  (t  is 
the characteristic time). The characteristic time is a function of 
location and height:

)()(),( hxhx HL ttt +=

Although the )(xLt  term is defined by the city planners, 
the )(hHt  term is an endogenous decision of the developer and 
is proportional to the project height.

The “small” developers’ algorithm of the choice of location 
and height of buildings is the following:

Choose randomly one cell of all vacant cells for which 
T<t
According to the WTP and the land cost, calculate the 

minimal height minh required to make some profit
E s t i m a t e  m a x i m a l  h ,  f o r  w h i c h  

t (x, h) = t
L
 (x) + t

H
  (h) = T; if h ≥ h

mn 
purchase the land, wait 

time T, and develop the project of the height h.
The city development policy is to allow development on cells 

satisfying T<t . Therefore, the “small” developers’ strategy is 
risk-free. They are assured that any project proposal defined by 
their algorithm will be approved and finalized in a period T.

City planners aim at supplying the growing city population 
with housing. They monitor construction activity in the city 
by estimating an average “construction index” over a predeter-
mined period of time. Thus, the construction index is used as 
a proxy for population growth. If the building index surpasses 
the threshold, housing supply is considered high enough. If it is 
falls below the threshold, administrative measures are taken to 
encourage new development. The planners react to the demand 
by the “big” developers to permit construction on parcels with 
high characteristic time.  

The “big” developer takes a different approach from the 
“small” one. In early city development stages, when the city’s core 
(i.e., sites where T<t ) still is not fully developed, he or she 
will choose sites there, but because he or she is not constrained 
by time, the projects will be considerably more intensive (i.e., 
high-rise buildings) than those of its “small” counterparts. 

Once sites where T<t  become unavailable, the “big” 
developer has two risky choices. One possibility is to purchase a 
low building in the city core and replace it with a high-rise build-
ing. Because of limited and outdated urban infrastructure and 
opposition from neighbors, the characteristic time of these sites 
is large. The other choice is to speculate and buy land for future 
construction and future returns in the periphery of the city. The 
second choice is “speculation” because it is against the declared city 
policy. To obtain construction approval, the developer gambles 
for a future change in the municipality’s policies. 

The policy change can become a reality when the city core is 
fully developed and the construction index falls below the thresh-
old. A stagnation situation arises during which “small” developers 
are inactive, because sites with T<t are unavailable. There are 
some sites in the city periphery that “big” developers are willing to 
build, but they are prevented from doing so by the municipality. 
The simpler palliative solution from the city viewpoint is to give 
up and approve some of the development sites in the periphery. 
This administrative action may push the building index above 
the threshold but only for a short period of time.

“Big” developers’ speculative behavior increases when sites 
in the periphery receive building approvals. They are attracted 
by those peripheral sites for they have justified expectations to 
receive building approvals and, indeed, if the building index 
falls again below the threshold they will be able to develop closer 
sites. However, the financial capabilities of the “big” developer 
are limited. There is an upper boundary on the quantity of sites 
that can be held in waiting status. 

These dynamics lead to small clusters of high-rise buildings 
that emerge in peripheral areas. When such clusters become 
concentrated enough, city planners realize that the slow high-rise 
building permissions created the seed of a new urban subcenter 
and that the specific peripheral zone will become urbanized. The 
municipality then relaxes the characteristic time constraints in 
that zone, defining its lowest level in the new cluster, and gradu-
ally increasing it outward. The exact characteristic time function 
reflects the building boost that city planners are willing to allow. 
A smoothly increasing function will transform a wider area avail-
able for development than a sharp one will. In any case, a large 
set of new locations where T<t  is created, and, therefore, new 
opportunities both for “big” and “small” developers arise. Both 
devote themselves to the new subcenter development, giving rise 
to a construction boost that pushes the construction index far 
above the threshold. The increased activity continues until the 
new subcenter is fully developed, followed by a new stagnation 
period, when the whole process is expected to happen again.
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The main model elements are described in the following list:
•	 Economic parameters: Willingness to pay, land price, and 

the rate of decay with distance. These parameters are kept 
fixed in all the scenarios described here.

•	 Developers composition (number of “small” and “big” 
developers active in the city). Different developers’ 
composition will lead to different spatial results.

•	 City planners monitoring and policy tools: Building index 
over time and policy-setting parameters. Most of these 
parameters are kept fixed in all the analyzed scenarios. The 
only one that is changed is the size of the area allowed for 
development when a new peripheral area is urbanized.
The following Table 1 summarizes the model’s parameters:
 

Results
Most model parameters are kept fixed during all the scenarios 
runs. Only a selected group of parameters are changed to allow 
sensitivity tests. Those key parameters are the relative number 
of “small” and “big” developers and the area defined for a new 
urbanization pole once the authorities decide to allow develop-
ment in a previously open periurban space. Within each scenario 
each key parameter is specified.

In all the following simulations a high characteristic time 
function is assumed.

First Scenario: 
Homogeneous Developers
In the presence of a homogenous group of “small” developers, the 
cityscape resembles an Alonso-type city. The city size and its height 

distributions depend on the development policy implemented by 
planning authorities. Assuming a single development strategy (will-
ingness to concentrate urban development around the existing city 
core and prevent sprawl), three different policy settings are explored: 
a constrictive setting characterized by high characteristic times, a 
more relaxed setting with medium times, and an expansive policy 
using low characteristic times. In all three cases, the characteristic 
time functions increase monotonically from the CBD outward. 
Table 2 defines the key parameters of this scenario:

Table 2. First scenario key parameters

Parameter Value
Number of “Small” Developers 10
Number of “Big” Developers 0
Radius of the Area Allowed for New Urbanization 10 pixels

Figure 3 illustrates the final result of each of those policy 
settings viewed from above. Higher characteristic time results 
in smaller available development area (left image) while  lower 
ones expand the suitable land range. Figure 4 describes the height 
transects of these characteristic time settings.

The overall building activity in each of the cases is character-
ized by a single construction burst, maintained until each available 
development is occupied. Because low-characteristic time implies 
larger spaces available for development and higher buildings in 
any given site, a low-characteristic time function will result in 
a steeper, wider, and long-lasting cycle of construction activity. 
The following diagram in Figure 5 indicates the accumulative 
construction activity in a monocentric city according to the dif-
ferent policy settings.

Table 1. Model’s parameters

Parameter Comment Value Unit

Willingness to Pay
Represents the WTP for a dwelling unit close to an existing single-
story building (fixed in all scenarios).

4000 $

Rate of Decay of the WTP
The linear rate of decay of the WTP with distance (fixed in all 
scenarios).

0.5 No unit

Land Price
Represents the land price for a parcel close to an existing single-
story building (fixed in all scenarios).

4000 $

Rate of Decay of the Land 
Price

The linear rate of decay of the land price with distance (fixed in all 
scenarios).

1 No unit

Distance
The distance between two cells. Each cell represents a standardized 
square building lot of 100 m x 100 m.

-- Pixels

Time
All time units in the system (characteristic time of each cell, model 
running time, etc.) are defined in terms of system ticks. Each tick 
represents a year.

-- Ticks

Number of “Small” Developers Value changes according to scenario. --
Number of 
developers

Number of “Big” Developers Value changes according to scenario. --
Number of 
developers

Radius of the Area Allowed for 
New Urbanization

Value changes according to scenario. -- Pixels
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In the presence of a homogenous group of “big” developers, 
the cityscape will show a scattered spatial structure where only 
high-rise buildings are present and urban centers are hard to rec-
ognize. Because small clusters of high-rise buildings are created 
elsewhere (“small” developers do not exist in this scenario), in the 
long run, the municipality identifies seeds of new urbanizations 
dispersed randomly in the space and relaxes the characteristic time 
virtually everywhere. As a result, “big” developers are able to build 
in any place and a continuum of high-rise buildings emerges.

Second Scenario: 
Heterogeneous Developers 
(Ten “Small” Versus One 
“Big”)
When a heterogeneous group of developers is allowed, the re-
sults are radically different. Even the introduction of a single 
“big” developer radically changes the way the system evolves. 
A typical simulation, in which ten “small” and a single “big” 
developer participate, starts with a monocentric city, as long as 
low-characteristic time parcels are available. The following Table 
3 defines the key parameters of this scenario:

Table 3. Second scenario key parameters

Parameter Value
Number of “Small” Developers 10
Number of “Big” Developers 1
Radius of the Area Allowed for New Urbanization 10 pixels

Figure 6 (left frame) shows the central city configuration, 
when red cells represent sites developed by big-scale developers 
and yellow cells represent sites purchased by them but in waiting 
status. As time passes, the building index, which experienced a 
boost during the central city development, decreases below the 
threshold acceptable for the municipality (20 dwelling units in 
20 time units) as shown in Figure 7. In response, waiting par-
cels with high-characteristic time are allowed to be developed. 
But those developed sites in the edge of the monocentric city 
become development poles created by “big” developers and 
the municipality’s further response is to relax the characteristic 
time around the site. “Small” developers can turn back into the 
real estate market for new opportunities now are available and, 
indeed, a new subcenter arises around the site (Figure 6, center). 
Later, another aggregation of high-rise buildings in the northern 
periphery of the city leads to the creation of a new subcenter at 
a greater distance than the previous one (Figure 6, right picture).

Again, as low characteristic time available land is exhausted, 
developers with a preference for immediate returns (“small”) turn 
to alternative activities, but developers willing to speculate (“big” 
developers) can continue to purchase land in the periphery or can 
turn to building renewal through demolition and rebuilding. As 
time passes, the building index is prone to fall again below the 
threshold, leading to new rounds of intensive subcenter develop-
ment resulting from the same approval and characteristic time 

Figure 4. Transects of a city with homogeneous “small” developers. 
From left to right, high-, medium-, and low-characteristic time 
functions

Figure 5. Construction activity in a city with homogeneous “small” 
developers

Figure 3. Upper view of a city with homogeneous “small” developers. 
From left to right, high, medium, and low characteristic time 
functions

Figure 6. Polycentric city development
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change dynamics. Figure 8 illustrates several development runs, 
until there is no more available land for development. In par-
ticular, in the right side of the lower row there is a clear example 
of leapfrogging.

The building index monitored by the municipality reflects 
the city dynamic development process, as depicted in Figure 9.

The cumulative construction activity reflects the trends 
observed in the building index graph (Figure 10). It is character-
ized by short periods of steep slopes (the subcenters construction 
bursts) followed by relatively long periods of minimal activity 
(when only “big” developers are active).

The polycentric structure of the city can be demonstrated 
using the height transects, which clearly reveal some of the sub-
centers created around the CBD (see Figure 11):

An additional description of the polycentric city structure is 
from above, isolating buildings between certain ranges of heights. 
In Figure 12, selected height ranges are marked by levels of gray. 
Low-rise buildings (less than ten stories) show clear concentric 
patterns around their respective subcenters (brighter gray pixels) 
as do medium-rise buildings (between 11 and 30 stories, in gray 
pixels), but high-rise buildings (more than 31 stories) are located 
in the middle of their respective subcenters but also scattered 
without an easily recognizable pattern (black pixels). The reason 
is that low-rise buildings were built by “small” developers attracted 
to a site because of the relatively low characteristic time and, 
therefore, their height reflects the characteristic time function 
behavior. In contrast, “big” developers are much less influenced 
by time constrictions and, therefore, their construction patterns 
are much more random.

Figure 7. First stage of the building index in a polycentric city

Figure 8. Polycentric city development

Figure 9. Polycentric city development reflected by the building index 
by time

Figure 10. Construction activity in a city with heterogeneous developers

Figure 11. Height transects of a polycentric city

Figure 12. Heights 
from above. Bright gray 

pixels represent low-
rise buildings (less than 
ten stories), gray pixels 
medium-rise buildings 

(11 to 30), and black 
pixels high-rise buildings 

(more than 31 floors)
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Third Scenario: 
Heterogeneous Developers 
(Ten “Small” Versus Two 
“Big”)
In this scenario, a heterogeneous group of developers is allowed, 
but the proportions between the developers’ types changes: Two 
“big” developers are participating with ten “small” ones. The 
same dynamics described in the previous scenario are expected, 
but the development rhythm is different. Table 4 defines the key 
parameters of this scenario:

Table 4. Third scenario key parameters

Parameter Value
Number of “Small” Developers 10
Number of “Big” Developers 2
Radius of the Area Allowed for New Urbanization 10 pixels

Figure 13 shows the city spatial development process. Similar 
patterns to those described in the previous scenario are shown 
but at a faster rate.

The significant change in the intensity and the velocity of 
city development can be fully appreciated in Figure 14, which 
compares the building activity of this scenario with that of the 
previous one. The city is fully developed faster if two “big” devel-
opers are active and the number of built houses is much higher. 
This result is the outcome of the higher pressure exerted on the 
planning authorities by a population of “big” developers, which 
is twice as much as in the previous scenario (which leads to quick 
development areas release), combined with the higher buildings 
erected by them.

Fourth Scenario: 
Heterogeneous Developers 
with Smaller Development 
Allowed Area
As explained in the previous two scenarios, the relative proportion 
of “big” and “small” developers has a dramatic influence in the 
urban spatial development cadence.

However, the characteristics of the developers active in a city 
are presumably an outcome of the city’s economic attractiveness 
but less a result of the planning authority’s policies. Therefore, 
to assess planning policies, it is interesting to test the model 
sensitivity to a parameter that is fully controlled by city planners 
and decision makers. This parameter is the area allowed for new 
urban development once the building index falls below its lower 
threshold. In all the previous scenarios, it was assumed that this 
radius is defined as ten pixels around a new high-rise buildings 
pole erected by “big” developers. In this scenario, we assume a 
more restricted response by city planners, allowing new develop-
ments on a smaller area, with a radius of five pixels.

Figure 13. Polycentric city development (ten “small” versus two “big” 
developers)

Figure 14. Construction activity with heterogeneous developers and 
different proportions between types

Figure 15. Construction activity with heterogeneous developers and 
different development allowed areas
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Table 5 defines the key parameters of this scenario:

Table 5. Fourth scenario key parameters

Parameter Value
Number of “Small” Developers 10
Number of “Big” Developers 1
Radius of the Area Allowed for New Urbanization 5 pixels

Obviously, because new development areas are smaller, the 
spatial development process is slower compared with the case of 
a ten-pixel radius. The following graph in Figure 15 shows the 
difference between both policy options.

Another important difference between those two policy op-
tions is that the development intensity of the city is higher when 
the allowed area is smaller. Because developers’ time impatience 
is fixed, smaller allowed areas imply that impatient developers 
will build higher buildings to maximize profits. Although “big” 
developers’ behavior does not change under different city policies, 
changes in “small” developers’ behavior are enough to provoke an 
overall more intense development. Figures 16 and 17 show the 
final city configuration and the heights distribution for the case 
of a development radius of five pixels.

Discussion
The basic, traditional urban economic models (Alonso 1964, 
Mills 1967, Muth 1969) are powerful tools able to explain the 
main forces behind cities’ development. However, their spatial 
outcomes assume the form of a well-organized monocentric city, 
a pattern that is hardly verified in any modern city (Irwin and 
Bockstael 1998, Wha et al. 2011, Serra and Pinho 2011). Several 
efforts were invested enriching the basic model to explain sprawl 
and scattered development, for example, assuming landowners 
intertemporal planning (Mills 1981), perfect foresight of land 
rent value (Wheaton 1982, Fujita 1982), or dynamic residential 

processes (Turnbull 1988). In most of those models, municipali-
ties’ regulation roles and planning policies are neglected or at least 
assumed to have little influence. We claim that the combination 
between urban planning policies and developers’ behavior can 
explain much of the city spatial development patterns. In previ-
ous papers, the influence of the characteristic time imposed by 
planning authorities on leapfrogging dynamics in linear spaces 
was analyzed in a single city model (Czamanski and Roth 2011) 
and assuming two interacting municipalities (Czamanski and 
Broitman 2011). In this paper, our objective is to explore the 
assumption that different types of developers exist (“big” and 
“small,” characterized by scale of operations, availability of own 
capital, and time preferences), which are differentially affected 
by city planning policies expressed as spatial characteristic time 
settings, and some of them are able, in turn, to influence those 
policies. 

There is growing evidence that urban development can be 
considered a complex system (Wilson 2006) with self-organizing 
characteristics (Kumar et al. 2007). Moreover, some scholars 
claim that cities and networks of cities may represent cases of 
self-organizing criticality (Batty and Xie 1999, Chen and Zhou 
2008). The insights that our model can reveal exploring such 
issues are beyond the scope of the present paper, but they seem 
promising and, therefore, we suggest them as possible futures 
lines of research.

Conclusions
While traditional urban models cannot explain the formation of 
polycentric urban development patterns, here we explain it by 
analyzing the interaction between real estate developers’ choices 
and municipal planning policies. While planning policies differ 
among countries, in many places zoning variances are possible. 
Our model indicates phase transitions in the urban spatial con-
figuration as a result of the behavior of homogenous “small” 

Figure 16. Final stage of a polycentric city development with 
development radius = five

Figure 17. Heights from 
above in a city with 

development radius = five. 
Bright gray pixels represent 

low-rise buildings (less 
than ten stories), gray 

pixels medium-rise 
buildings (11 to 30), and 

black pixels high-rise 
buildings (more than 31 

floors)
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developers or a mix of “small” and “big” developers. Sprawling 
suburbs, scattered land development, and subcenters emergence 
follows the complex dynamics created by “big” and “small” de-
velopers’ choices in time and space. These results shed light on 
possible outcomes of planning policies, in particular outcomes 
of restrictive development policies that at times become coun-
terproductive. The resemblance between the spatial dynamics 
resulting from our model and self-organizing criticality models’ 
outcomes suggests that further research on linkages between 
them is promising.

Acknowledgements

“The authors wish to thank to the Israel Science Foundation 
(grant number 666/10) and the Technion - Lower Saxony Re-
search Fund for partial funding.”

About the Authors

Corresponding Address:
Daniel Czamanski
Faculty of Architecture
Technion—Israel Institute of Technology                                            
Haifa 32000 Israel 
danny@czamanski.com

The authors are associated with ComplexCity Research Lab 
Faculty of Architecture and Town Planning Technion - Israel 
Institute of Technology“

References

Alonso, W. 1964. Location and land use. Cambridge: Harvard 
University Press.

Alperovich, G., and J. Deutsch. 2000. Urban non-residential 
density functions: Testing for the appropriateness of the 
exponential function using a generalized box-cox transfor-
mation function. Annals of Regional Science 34: 553-68.

Batty M., and Y. Xie. 1999. Self-organized criticality and urban 
development. Discrete Dynamics in Nature and Society 3: 
109-24.

Benguigui L., D. Czamanski, and M. Marinov. 2001a. The 
dynamics of urban morphology: The case of Petah Tikvah. 
Environment and Planning B 28: 447-60.

Benguigui, L., D. Czamanski, and M. Marinov. 2001b. City 
growth as a leap-frogging process: An application to the Tel 
Aviv metropolis. Urban Studies 38(10): 1819-39.

Benguigui, L., and D. Czamanski. 2004a. Simulation analysis of 
the fractality of cities. Geographical Analysis 36(1): 69-84.

Benguigui, L., D. Czamanski, and M. Marinov. 2004b. Scaling 
and urban growth. Journal of Modern Physics C 15(7): 
989-96.

Benguigui, L., E. Blumenfeld, and D. Czamanski. 2006. The 
dynamics of urban morphology. Environment and Planning 
B 33: 269-84.

Chen, Y., and Y. Zhou. 2008. Scaling laws and indications of 
self-organized criticality in urban systems. Chaos, Solitons 
and Fractals 35: 85-98.

Czamanski, D., and D. Broitman. 2011. Developers’ choices 
under varying characteristic time and competition among 
municipalities. Forthcoming in Annals of Regional Science. 

Czamanski, D., and R. Roth. 2011. Characteristic time, develop-
ers’ behavior and leapfrogging dynamics of high-rise build-
ings. Annals of Regional Science 46(1): 101-18.

Fujita, M. 1982. Spatial patterns of residential development. 
Journal of Urban Economics 12: 22-52.

Fujita, M. 1989. Urban economic theory, land use and city size. 
Cambridge: Cambridge University Press.

Furst C., M. Volk, K. Pietzsch, and F. Makeschin. 2010. Pimp 
your landscape: A tool for qualitative evaluation of the ef-
fects of regional planning measures on ecosystem services. 
Environmental Management 46: 953-68.

Golan, E. 2009. 3D urban morphology. M.A. Thesis, Technion—
Israel Institute of Technology. 

Henderson, J. V., and A. J. Venables. 2008. The dynamics of city 
formation. Review of Economic Dynamics doi: 10.1016/j.
red.2008.06.003.

Irwin, E. G., and N. E. Bockstael. 1998. Endogenous spatial 
externalities: Empirical evidence and implications for the 
evolution of exurban residential land use patterns. In Anselin 
and Florax, Eds. Advances in spatial econometrics.

Kumar M., W. M. Bowen, and M. Kaufman. 2007. Urban spatial 
pattern as self-organizing system: An empirical evaluation of 
firm location decisions in Cleveland–Akron PMSA, Ohio. 
Annals of Regional Science 41: 297-314.

Lai, S. K., C. Ding, P. C. Tsai, I. C. Lan, M. Xue, C. P. Chiu, 
and L. G. Wang. 2008. A game-theoretic approach to urban 
land development in China. Environment and Planning B 
35: 847-62.

Mills, E. S. 1967. An aggregative model of resource allocation in a 
metropolitan area. American Economic Review 57: 197-210.

Mills, E. S. 1981. Growth, speculation and sprawl in a monocen-
tric city. Journal of Urban Economics 10: 201-26.

Muth, R. 1969. Cities and housing. Chicago: University of 
Chicago Press.

Serra, M., and P. Pinho. 2011. Dynamics of periurban spatial 
structures: Investigating differentiated patterns of change 
on Oporto’s urban fringe. Environment and Planning B 
38: 359-82.

Turnbull, G. K. 1998. Residential development in an open city. 
Regional Science and Urban Economics 18: 307-20.

Wheaton, W. C. 1982. Urban residential growth under perfect 
foresight. Journal of Urban Economics 12: 1-21.

Wilson, A. G. 2006. Ecological and urban systems models: Some 
explorations of similarities in the context of complexity 
theory. Environment and Planning A 38: 633-46.





URISA Journal • Kocabas, Dragicevic, McCann 35

Integration of a GIS-Bayesian Network Agent-based Model 
in a Planning Support System as Framework for Policy 

Generation

Verda Kocabas, Suzana Dragicevic, and Eugene McCann

Abstract: The link between theoretical complexity-based land-use models, more particularly agent-based models, and practi-
cal planning support systems (PSS) is not yet fully elaborated in the current literature. Land-use models that use agent-based 
approaches still need to be improved and robustly tested if they are to be used effectively as a component of PSS. The objective 
of this study is to propose a framework for the integration of agent-based models in PSS to simulate future land use and, thus, 
influence land-use policy and decision making. To achieve this end, a Bayesian Network–based Agent System (BNAS) model of 
urban land-use change has been integrated into a PSS. The model incorporates a geographic information system (GIS), Bayes-
ian Networks (BNs), and agents that represent locational choice behavior of households and commercial firms. In testing the 
proposed agent-PSS framework for policy generation, this study uses three land-use change scenarios, each associated with dif-
ferent policies for urban development. The framework has been applied to simulations of land-use change in the city of Surrey, 
British Columbia. The results indicate that the BNAS model can be a useful practical tool to assist urban land-use planners 
in the examination of ‘what-if ’ scenarios about land-use polices. It can shape the scope and character of decision making and 
future urban development.

Introduction
Planning support systems (PSS) are information systems that 
support planning through problem diagnosis, data collection, 
mining, spatial and temporal analysis, data modeling, visualiza-
tion, scenario building and projection, and collaborative decision 
making (Saarloos et al. 2008). PSS involve a wide range of tools 
that are as diverse as the steps of the planning process itself, from 
data selection and integration to public participation and negotia-
tion to final policy compromises and implementation monitoring. 
There are a variety of models integrated within PSS: 

Models that are based on geographic information systems 
(GIS) and spatial statistics. Some examples of GIS-based mod-
els used as PSS are: A “What-if system” (Klosterman 1999), the 
Planning System for Sustainable Development (PSSD) (Hansen 
2001), the System for Planning and Research in Towns and Cit-
ies for Urban Sustainability (SPARTACUS) (Lautso 2002), and 
the Population and Land Use Model (PLUM) (WhatIf? 2011).

Models, such as cellular automata and agent-based models 
(ABMs), that address the spatiotemporal context of the land-
use processes through complexity theory and GIS. Linking 
PSS with complex system models that are capable of handling the 
complex spatial and temporal dynamics of urban land-use change 
will increase their utility as tools for urban and land-use planners’ 
decision making and policy evaluation (Torrens 2002, Zellner 
2008). Complex system models, based on cellular automata or 
agent-based approaches, allow the generation of different land-use 
change scenarios and, therefore, facilitate the assessment and the 

implications of those scenarios. In PSS, ABMs are models that allow 
planners to visualize, analyze, and simulate dynamic phenomena 
emerging from the interaction of individual agents (Saarloos et 
al. 2008). One of the main advantages of ABMs is their ability to 
represent the complex and nonlinear interactions among individ-
uals and actors that directly influence land-use change. PSS with 
ABMs make use of dynamic models that combine spatial processes 
and human decision making (Parker et al. 2003, Benenson 2004). 

Saarloos et al. (2005) have developed a multiagent model for 
generating alternative land-use plans in which the agents are land-
use experts who initiate the development of plan proposals and 
communicate with each other over time to draw up the proposals 
incrementally. Li and Liu (2008) have utilized an ABM as a spatial 
exploratory tool for generating alternative development patterns 
with sustainable development strategies. Kii and Doi (2005) have 
examined the effectiveness of policy measures aimed at achieving 
a compact city form by developing the MALUT agent-based 
model. Ligmann-Zielinska and Jankowski (2007) have applied 
the CommunityViz Policy Simulator to generate development 
scenarios to evaluate ABM’s operational use in applied plan-
ning settings. Furthermore, Ligmann-Zielinska and Jankowski 
(2009) have experimented with a utility-based approach and an 
agent-based model to test different conceptions of risk-explicit 
decision making. The benefits and drawbacks of the integration 
of an agent-based model of land-use change and a groundwater 
flow numerical model have been explored by Zellner and Reeves 
(2010). They examined the multidimensional effects of land-use 
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patterns and policy implications. Robinson and Brown (2009) 
have illustrated the use of a GIS-based ABM, called DEED, to 
produce results that describe the individual and interaction ef-
fects of minimum lot-size zoning and land-acquisition strategies 
on forest cover. Zellner et al. (2009) have employed an agent-
based model to explore how underlying microbehaviors affect 
the payoffs of regional forested space and of local tax revenue 
obtained by two neighboring municipalities in a hypothetical 
exurban area. Although all these studies utilize ABMs for urban 
planning or urban policy evaluation, they are either theoretical 
(never implemented in real contexts) or they have not been fully 
integrated into a PSS framework.

Other studies have identified challenges when existing ABMs 
are used in urban planning. The first challenge relates to simulat-
ing agent behavior and interactions. Most ABMs define agent 
behavior and interactions with rules (Gimblett et al. 1996, Torrens 
2006). Rule definition is a challenge in ABM design because:

The large amount of alternatives from which an agent has to 
choose causes the model runs to be long, producing computational 
complexity (e.g., endless loops) and consequently modeling error.

The complexity of internal relationships between variables 
makes the models as black boxes and most of the methods are 
not designed to handle the complexity.

Additional studies have used random utility theory and 
multinomial logit models (MNL) (Waddell 2002, Miller et al. 
2004, Torrens and Nara 2007). In these models, the variables 
directly affect the modeling phenomenon and may not account 
for indirectly interacting variables (in which variable A affects 
variable B, which then affects the model output). Indirect variable 
interaction is important because variables in real-world processes 
do not only affect each other directly. As a result, it is important to 
include this characteristic in an urban model for it to be realistic. 
Fuzzy logic has been used for agent decision rules (Graniero and 
Robinson 2006), but this approach does not provide inference 
from observed data (Hassan et al. 2010). This is important for 
analyzing historical trends in urban systems. Neural networks 
(NN) also have been used in ABM decision rule design (Collins 
and Jefferson 1992, Gilbert and Terna 2000), but one drawback 
is that they do not provide information about the relationships 
between variables (Mas et al. 2004), including how they affect 
each other and the model output. Genetic and evolutionary 
algorithms methods also have been used for rule definition to 
represent human decision making for the ABMs in the land-use 
change process (Manson 2006). However, the fitness functions 
of genetic algorithms do not necessarily provide a single solution 
but a range of solutions and this becomes a disadvantage for agent 
reasoning and decision making. This limitation makes the agent 
decision making a complex process because having more than 
one solution produces longer simulation runs and endless loops.

The second challenge with existing ABMs is the way in which 
they incorporate dynamic variables and how the system adapts to 
changing variables. It is difficult to incorporate dynamic variables 
in the existing models. Their design is not modular and, there-
fore, they do not allow the easy addition of updated variables. 

Nonmodularity means variables and their relationships are static 
and permanent. To add a new variable, the model would have to 
be recoded and redesigned entirely for on-the-fly changes are not 
possible.  In addition, these models do not handle many dynamic 
variables in the modeling process. Moreover, there is no change in 
the relationships between model variables during model iterations 
as a result of changing conditions. 

The third challenge with the existing ABMs is how they deal 
with uncertainty and limited data about agent behavior. ABMs 
usually are designed to use historical data for which there may 
not be adequate quantity and quality. This means the models 
must rely on assumptions and hypotheses and so uncertainty is 
introduced into the modeling process. To overcome this prob-
lem, a certainty measure can be added to the rules (Batty 2005) 
by which the rules describe how much a change in the certainty 
of the inputs will change the certainty of the output. However, 
uncertainty is not easy to localize; thus, it strongly depends on 
all the parts of the model. 

The Bayesian Network–based Agent System (BNAS) model 
responds to these aforementioned challenges by integrating Bayes-
ian Networks (BNs) and an agent-based model. The BNAS model 
has been conceptualized, developed, and validated for modeling 
land-use change by Kocabas (2008) and Kocabas and Dragićević 
(2006). The main objective of this research study is to examine 
the capabilities of the BNAS model as a policy generator in a PSS 
framework. By employing BNs in its design, the BNAS model can 
use backward inference.  This means that it is possible to enter a 
desired land-use pattern into the model and then use it to generate 
policies that would create that land-use pattern. The resulting 
simulations can be used as a laboratory for exploring scenarios for 
urban land-use change. The BNAS-PSS framework was applied to 
the rapidly growing city of Surrey, British Columbia.  Scenarios of 
land-use change were developed to reflect various urban policies. 

BNAS Model Design
The BNAS model combines GIS, BNs, and agents to model 
complex urban land-use change and the spatial relationships 
between drivers affecting the change. It consists of the following 
components:

Agent types: The BNAS model includes household agents 
and commercial firms that settle in a particular urban area. Four 
different types of agents (three different household agent types 
and one commercial firm agent type) decide where to live/locate 
during the simulation periods. Based on socioeconomic charac-
teristics that affect how households evaluate locations, household 
agents are categorized as high-income (annual income more than 
C$100,000), middle-income (annual income between C$30,000 
and C$100,000), and low-income household agents (annual 
income less than C$30,000). Census data used in this study 
provides household income information for the agents. 

Framework for agent behavior and interactions: The 
BNAS model utilizes BNs to generate agent decisions through 
several model iterations (five years each). Each agent type has its 
own BN to create actions according to the agent’s objective and 
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the state of the environment. The BN associated with an agent 
is based on conceptualizing the locational choice of an agent as 
a graph (i.e., network) of connected nodes and linkages. In the 
graph, nodes represent important variables that affect locational 
choice and a link from one node to another represents a depen-
dency relationship between corresponding variables. To provide 
quantitative descriptions of the dependency links, BNs utilize 
probabilistic relations rather than deterministic expressions. BNs 
employ conditional probabilities, conditional dependence, and 
joint probability distribution to tackle the challenges of using 
certainty measures in rule-based models. Through the learning 
algorithms of BNs, the BNAS model generates the graph, the 
links, and the conditional probabilities from existing geospatial 
data.  This provides simplicity in rule definition within the ABMs. 
As a result, the BNAS model does not have a permanent network 
structure, variables, or conditional probabilities. Rather, variables, 
their values, and causal relationships differ, depending on the 
relevant data and study area. 

Prior experience of the study area is not necessary when 
constructing the agents’ rules. Users are able to input all the data 
available for the urban system that they are modeling. The BNAS 
model then will select only related variables that will be used in 
the model. It also will calculate/learn the relationship between 
variables in the input data. A basic knowledge of data gathering 
and a basic urban planning background will be adequate for a 
planner to use the model. In the BNAS, BNs allow all the model 
variables to have a clear semantic interpretation (interpreting the 
graph and the links) and allow the conditional probabilities to be 
intuitively understandable. 

BNs also provide the capability to model indirectly interact-
ing variables. For example, in the real world, economic factors 
such as new mortgage regulations and recent recession might affect 
demand for housing and might lead to decreasing housing prices. 
However, demand for housing does not directly affect a house-
hold’s decision to buy a new house.  Rather, housing prices directly 
affect the decision. As a result, mortgage regulations and demand 
for housing are indirectly interacting variables on the locational 
choices of people buying a house, while the price of house is a 
directly interacting variable. BNs allow these indirectly interact-
ing variables to be captured in the model. Moreover, BNs also 
have causal reasoning capabilities that provide knowledge about 
the decision making of the agents. Modeling causal relationships 
with indirectly interacting variables in a complex phenomenon 
is not an easy task for rule-based systems.

The BNAS model allows the definition of dynamic vari-
ables (time-dependent drivers) at the start of each simulation. 
This allows relationships between variables to change within 
the iterations and agents to adapt themselves to the changing 
conditions. The adaptation is accomplished by BNs recalculating 
the conditional probabilities of the affected variables. With the 
changing conditions, the BN model that is being used by each 
agent changes. 

The agents are designed to act based on their self-interests. 
Therefore, an agent chooses a location that maximizes its utility. 

Choosing a location becomes their “preference.” For each agent’s 
BN, there are also decision and utility nodes. A decision node 
represents the two decision alternatives “choose this location 
(stay)” or “not choose this location (search for another location).” 
A utility node represents the expected utility of each possible 
outcome of each decision.  

Furthermore, agents’ behavior is affected by that of other 
agents.  Therefore, each agent impacts the behavior of the others 
with respect to where to live. When a household agent makes its 
decision to stay, the location attribute is updated and the popula-
tion density of that location increases and affects the other agents’ 
decisions. When a commercial agent makes its decision to stay, 
the location attribute is updated and the commercial density of 
that location increases. 

Agents’ environment: The study area is represented as a 
digital environment in which agents operate. The two-dimension-
al space is structured by census units with irregular spatial tessel-
lations represented as GIS layers in the vector data format.

The system of agents’ iterations: The BNAS model is 
composed of static and variable parts. The static parts, which 
are specific to the BNAS model, include agent types (two main 
types, four in total), agents’ field of vision, and a definition of 
model iterations (five-year). The variable parts, which are specific 
to and change for each study area, consist of data variables (land-
use drivers) defined in the BN of each agent, links describing 
relationships between variables, conditional probabilities between 
variables, number of agents per agent type, and the model simula-
tion time period (e.g., ten years (two model iterations), 20 years 
(four model iterations), or 50 years (ten model iterations)). Users 
design the scenarios and corresponding policies by creating vec-
tor spatial data and input that information to the BNAS model. 
These inputs are used as variables in the BNs in each agent type.

	 During each model iteration, a number of agents for 
each agent type enter the urban environment one by one. Popula-
tion projection data is used to define the total number of agents 
that enter for each year, corresponding to each time step of the 
model simulations. The total increase in population for each 
year (entered by the user) is distributed among different types of 
agents based on the current distributions of each income group 
in the population. The numbers can be between 100 agents to 
one million agents per agent type for each iteration. The agent 
type entering the simulation is randomly selected by the model. 

Each agent can have one of two possible states: It is either 
searching for or has found a location. A random location is in-
itially assigned to each agent together with its own socioeconomic 
characteristics. With this information, each agent’s BN structure 
is used to create real-time decisions about a location, that is, the 
agent who is to make the decision runs the BN model and, based 
on the result, it makes a decision. If the decision is not to choose 
one particular location, then the agent searches within a radius 
of one kilometer (the neighborhood of that particular location) 
for other possible locations. The search continues until the agent 
decides on a location. It then stays in that location until the end 
of the whole simulation. 
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The neighborhood of a spatial unit consists of other spatial 
units that reside within a radius of one kilometer. The reason 
behind the radius is to introduce an agent’s field of vision that 
prevents it from searching the entire urban environment. 
Each agent has its own characteristics and field of vision and, 
in combination, they form a heterogeneous agent population 
in the BNAS model. Thus, agents do not evaluate all possible 
location alternatives. Instead, they use a sequential choice of local 
optimizations because rational decisions often are not feasible in 
ABM and are limited to the finite computational resources. This 
also is known as bounded rationality (Gigerenzer and Selten 
2001). Making agents search the entire city or urban area will 
lengthen model run-time based on the computer configuration 
and can make simulations unreasonably long.  Each agent type has 
a different range of vision related to its income level. High-income 
agents have a wider neighborhood radius to search because they 
can afford to live in a wider range of neighborhoods. 

The next step in the simulation is implemented based on 
the decision output from the agents. The urban environment 
changes according to the agents’ decisions at each model iteration 
as the population densities are calculated after each agent makes 
its decision on whether to stay in a location or move elsewhere. 
More than one agent can occupy a spatial unit, again representing 
real-world situations such as the existence of multifamily housing 
or a multibusiness commercial complex. However, there is a max-
imum limit on the population that can be accommodated in each 
spatial unit. These limits are conditioned by the residential and 
commercial density constraints defined by each growth scenario 
and can change depending on the study area and growth scenarios. 

If a location is filled to the maximum capacity, it is no longer  

available to other agents who are searching for this location. 
After all the agents have made their decisions, population density 
values are updated according to the decisions and, consequently, 
future land-use patterns are obtained. Thus, the final result of 
the simulation is the generation of population numbers and 
densities per census unit. When new commercial firms choose 
locations in the environment, model variables that are related to 
employment also are updated. In this way, firms affect each other 
as well as households and, similarly, households affect each other 
as well as firms. 

Given that the BNAS model is a dynamic model, the system 
runs each iteration 100 times. It then calculates the average 
population number and generates final population numbers 
and densities for each spatial unit. After obtaining these data, 
the BNAS model generates commercial and residential land-use 
classes. Residential land-use classes are categorized by densities 
ranging from high-density to low-density residential (urban) 
areas. This final land-use information is then used as an input 
to the next iteration. At the end of the simulation, the BNAS 
model generates the population densities and land use for each 
spatial unit. If a spatial unit has no population or commercial 
usage in the initial year and if it has a population density and/
or commercial use at the end of the simulation, that means new 
development has occurred in that area.

The BNAS model does not define permanent data variables 
(such as land-use drivers). This means it does not use the same 
variables, the same relationships between the variables, and the 
same conditional probabilities for different areas unlike existing 
ABMs. As a result, the BNAS model variables, the relationships 
between the variables, and the conditional probabilities change 

Figure 1. The link between the planning process and the BNAS model–based planning support system
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dynamically at the beginning of each simulation depending on 
the study area, the users’ opinions regarding the variables, and 
the historical land-use and census data. The use of BNs provides 
improvement over rules-based systems (Heckerman and Wellman 
1995) by allowing BNAS the ability to model even with missing 
input data. This BNAS model flexibility makes it suitable to be 
applied in the context of the planning support systems and in 
different study areas.

Methodology  
In this study, the utility of the BNAS model in a PSS framework 
is tested by using it as a policy generator and a future land-use 
simulator. When users enter their desired future land-use pat-
terns, the BNAS identifies the necessary policies that achieve that 
future. This is accomplished by BNs’ ability to use both forward 
and backward inference. This is significant to policy makers for 
the model provides information about land-use variable interac-
tions and how they relate to the locational choices of agents. The 
following sections describe the novel approach of BNAS in the 
integration of ABMs as a part of PSS with the application to a 
real-world city in Canada.   

The BNAS Model in a PSS Framework
A PSS is established after a specific planning problem is identified 
such as one related to planning for new urban development. Its 
goals and objectives are identified accordingly. Figure 1 illustrates 
the components of a PSS, its relation to the planning process, 
and how a Bayesian Network–based Agent System (BNAS) model 
fits within this context. The BNAS model can be employed in 

a PSS framework for processing information. The next sections 
explain how an ABM such as the BNAS can be engaged in a PSS 
framework following the steps presented in Figure 1. 

Processing Information from Data
An understanding of land-use change drivers and their interac-
tion with each other is of central importance in the analysis and 
forecasting of land-use change. This study assumes that the micro-
level location decisions of households are an important element 
of land-use change processes. Macroscale drivers that operate 
from the top down and microscale drivers that work from the 
bottom up are used as factors that affect agent decision making. 
The BNAS model can incorporate land-use decisions through the 
links between the various drivers. With specific BN structures, the 
causal relationships between drivers are represented in the model. 
After the potential land-use drivers are defined, the BN structure 
learning algorithms are executed with different configurations of 
drivers. By comparing the different BN structures, the important 
drivers affecting one or more variables in the structure can be used 
in the agents’ locational decision making.

Figure 2 provides examples of BN structures for the house-
hold agents to illustrate how a BN in an agent type can be 
represented (these are examples and do not represent the BNAS 
model’s variables). Each node in the network corresponds to a 
variable that affects an agent’s decision. When an agent is search-
ing for a location, the values of each node for that location are 
entered. The BNAS model then calculates the probabilities for 
the “choice” node, which represent an agent’s decision to choose 
a particular location. The links between the nodes indicate how 
the relationships between them are structured. These links are 

Figure 2. Examples of Bayesian Network structures with some land-use drivers as nodes that work on different scales: (a) macroscale BN 
structure and (b) microscale BN structure
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established in the BNAS by learning algorithms by which the links 
and probabilities are learned by the BNAS using the user’s inputs. 
The links indicate that a change in one will result in a change 
in all the linked variables, following the direction of the links. 

The macroscale BN structure is represented for a regional 
land-use model (see Figure 2 (a)). The example accounts for 
population migration and commercial start-ups controlled by 
regional factors (attractiveness/constraints). The regional ABM 
can be constructed using the example BN structure to simulate 
regional migration and the allocation decisions of households and 
commercial enterprises. For example, climate has some level of 
influence on the choice of household agents, crime rate affects 
housing costs, and housing exerts certain influence on household 
agents’ decisions about their places of settlement. 

The microscale BN structure is represented for the local-scale 
land-use model (shown in Figure 2 (b)). The link from “LRT” 
to “choice” indicates that proximity to a light rail transit (LRT) 
station ultimately can have an impact on the locational choice of 
the households. The type of dwelling in the location is associated 
with the number of rooms, leading to an influence on housing 
prices that, in turn, affect choice. In the example shown, closeness 
to the recreational facilities (Rec), housing prices (Value), and 
rental amounts (Rent) affect the population density (Density) 
of the location, but population density has no impact on agents’ 
locational choices.  

This study expands on the initial BNAS model by using it as 
a policy generator through the backward inference capabilities of 
BNs. Specifically, the BN is run with backward inference based 
on providing “children” values and obtaining “parent” values. 
For example, in Figure 2 (b), the node “choice” is a “children” 
node and “road” is a “parent” node. With backward inference, 
the values of the “road” node (posterior probability) can be 

determined given the “choice” node. Policy makers or urban 
planners can define the possible future of the study region and 
then the model can generate possible policy interventions. This 
can help in generating ideas and facilitating discussion among 
decision makers and urban planners about different policies and 
their consequences. With the desired land-use map, the model 
assigns the necessary policies to the locations (i.e., spatial units) 
in the urban environment. Then, each agent runs a BN associ-
ated with it, starting from the random location. The BN runs in 
the opposite direction. In this case, all the variables are known, 
including “choice,” but the “policy” variable is unknown. In the 
policy generator option of the model, agents are randomly located 
in the environment and only one agent runs the BN to calculate 
the policy for each spatial unit. Once the policy is obtained from 
the agent running the BN, the agent stops searching the environ-
ment.  Then, the next agent enters into the simulation. Thus, by 
the end of the simulation, the model finds the necessary policies 
for the desired outcomes and then updates the policies for each 
spatial unit to be used in the BN structures of searching agents. 
It should be reiterated that the BNAS model has two capabilities. 
First, it has forward inference capabilities to simulate future land 
use in which variables including policies are the inputs and future 
land use and population density are the outputs. Second, it has 
backward inference capabilities to find policies that will generate 
desired land-use outcomes in which desired land use is the input 
and policies are the outputs.

Figure 3. Study area: city of Surrey, British Columbia, Canada

Figure 4. “Growth concentration area” and “green zone” in the city 
of Surrey according to the Livable Region Strategic Plan (LRSP), 
adopted in 1996
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Implementation of the BNAS 
Model in a PSS Framework 
with Growth Scenarios
Study Area: City of Surrey
Metro Vancouver is the third largest urban region in Canada, 
encompassing 22 municipalities and one electoral area in 
southwest British Columbia (see Figure 3) with a population of 
approximately 2.1 million (Statistics-Canada 2011). The region 
has undergone rapid population growth over the past 30 years. 
Regional growth has resulted in debates over land-use priorities. 
In 2002, regional-planning authorities launched the Sustainable 
Region Initiative, aimed at encouraging social, economic, and 
environmental sustainability. This initiative builds on the Livable 
Region Strategic Plan (LRSP), adopted in 1996 (MetroVancou-
ver 2011). The LRSP limits growth in a “growth concentration 
area” and a “green zone,” which consists of the farmland in the 
Agricultural Land Reserve (ALR), publicly owned parkland, 
environmentally sensitive areas protected by federal, provincial, 
or municipal regulation, and other lands identified by individual 
municipalities (shown in Figure 4). 

Drivers of Land-use Change as BNAS Model 
Variables
The variables used in the BNAS model application for the city 
of Surrey are as follows: 
•	 Population density (density) is used as a variable for it 

is a key factor in land-use change (Hu and Lo 2007). The 
population variables were obtained from Canada Census data 
and population density was calculated for each census unit. 
Population density is grouped into three classes: low (less 
than 20 people/ha), medium (between 20 and 60 people/
ha), and high (more than 60 people/ha).

•	 Accessibility to major transportation routes—to roads 
(road) and SkyTrain elevated light rail stations (sky) 
are used as variables to incorporate the effects of the road 
network and public transit on land-use change. Accessibility 
is calculated as the Euclidean distance to the nearest road 
and light rail stations from the census unit. 

•	 Accessibility to town centers (town) determines residential 
location in this study. These centers provide a range of retail 
and office uses, employment, entertainment, cultural and 
educational services and facilities, and residential housing 
(see Figure 5). The distance from each town center to the 
center of each census unit was calculated and the minimum 
distance for each unit was selected for the nearest town 
center, such as Guildford, Fleetwood, Newton, Cloverdale 
and South Surrey centers. 

•	 Distance to employment centers (emp) is taken into 
account by using a cost-distance function. Cost distance is 
the calculation of distance in terms of the measure of cost 
from residential areas to employment centers. Cost distance 
was used instead of a linear-distance calculation because 

any travel to the employment centers incurs costs, either 
in money, time, or effort. Thus, this cost affects the agents’ 
locational choice. 

•	 Distances to recreational areas (rec), type of dwellings 
(type), and number of rooms (rooms) also were used as 
variables. Housing characteristics were obtained from Canada 
Census data. Distance to recreational areas was calculated as 
a Euclidean distance to recreational areas.

•	 Land prices (value) and rental amounts (rent) affect 
household locational choices. These variables were obtained 
from the Canadian Statistics Agency.

•	 Policy (poly) variable provides different policy options, 
including taxes, residential density, construction, and land-
use constraints/zoning. Each of the policy options and their 
levels are defined in the policy variable. This allows the BNAS 
model to generate different growth scenarios. Each scenario 
has different policy options as presented in Table 1.

Data for major roads and SkyTrain stations were obtained 
from the Greater Vancouver Transportation Authority (Translink). 
Town and employment centers data were obtained from Metro 
Vancouver. The city of Surrey was chosen as a study area because 
its community plan addresses its dynamic growth in the context 
of the LRSP (City of Surrey 1996). The vector GIS land-use data 
for year 2001 was obtained from Metro Vancouver and used as 
the initial environment for the agents.

The BNAS Simulation Modeling for Planning 
Scenarios
Planning and growth management in Surrey are dominated by 
local and regional policies. At the regional level, the city has a 
growth management framework that is linked to Metro Vancouver’s 
LRSP. This study’s aim is to compare the BNAS model simulation 
outcomes with those presented by the LRSP management policies 
and Surrey’s land-use plan (see Figure 6). For each scenario, the 
policy variable uses some of the policies defined by LRSP. The PSS 
framework uses scenarios to generate different policy outcomes. 
Only growth scenarios (as opposed to stasis or decline scenarios) 
have been considered because Surrey has adopted a growth man-
agement framework and it is a city that is growing continuously. 

The urban development scenarios used in this study are a 
Compact Growth Scenario, an Environmental Growth Scenario, 
and a Sustainable Growth Scenario. Translating these scenarios 
into model inputs was accomplished by interpreting policies and 
creating input files for the model that represents these policy in-
terpretations (see Table 1). Although the scenarios have common 
policies, the level of policy intervention changes depending on 
the scenario. For example, the Compact Growth Scenario has high 
tax values for development on previously undeveloped areas.  In 
contrast, the Environmental Growth Scenario is characterized by 
lower taxes on similar development.

Each scenario has different policy details that have been 
incorporated in the BNAS model as policy variables. In the Sus-
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tainable Growth Scenario, low taxes were applied to existing urban 
areas and high taxes were applied to natural areas. Zoning controls 
and residential density constraints have been introduced in the 
policy variable. These policies are examples for the chosen study 
area but there is no limitation to the policies that can be defined 
in the model. Although there are high taxes, agents (households 
or commercial firms) still might prefer to locate in those areas, 
thus contributing to the emergence of new land-use patterns. The 
outcome of an agent’s behavior depends on the BN structure and 
its generated probabilities. 

The Compact Growth Scenario aims to promote growth on 
already urbanized areas. This scenario examines what would 
occur if policy makers decided to promote growth in existing 
urban areas. In the scenario, natural areas are not protected by 
policy interventions and agents are free to choose locations on 
natural areas. 

The Environmental Growth Scenario aims to protect areas of 
natural significance and amenity, including parks and recreational 
and agricultural areas, from future urban development. Therefore, 
it features more policy interventions, such as high taxes, that aim 
to protect natural areas. It also promotes infill developments but 
not in levels as high as in the Compact Growth Scenario. 

The Sustainable Growth Scenario promotes both compact and 
environmental growth. Thus, this scenario is a combination of the 

two previous scenarios and matches the principles of the LRSP.  
Therefore, it gives a high level of importance to both compact 
growth and environmental protection. 

These scenarios are examples of planning initiatives that 
might be adopted in reference to the particular situation in Surrey. 
The policies underlying the scenarios can be changed for different 
study areas and, given the BNAS model’s flexibility, there is no 
limitation on the choice of the scenarios. The scenarios remain 
fixed during the simulations. 

	

Results
To examine the long-term consequences of different scenarios 
with various policy settings, based on the available land-use data, 
six maps with simulation outcomes depicting land-use change at 
five-year intervals were generated. The time frame for the simu-
lations is from 2001 to 2031 (six iterations). The model inputs 
and outputs are in GIS vector data format. The algorithm of 
the BNAS was coded in MATLAB with object-oriented design 
(Mathworks 2011) by using some of the functions of the Bayes 
Net Toolbox (Murphy 2001) and the Arc_Mat Toolbox (LeSage 
and Pace 2004) that were loose-coupled with ArcGIS (ESRI 
2011). The developed graphic user interface (GUI) allows the 
configuration of variables, simulation runs, visualization, and 

Figure 5. City and town centers in the study area Figure 6. Development map proposed by the Surrey City Community 
Plan
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analysis of the BNAS model simulations for the urban land-use 
data representing the agents’ environment. 

The BNAS Model Graphic User Interface
Figure 7 is a screenshot of the menus in the BNAS model’s GUI. 
Before running the model, users must configure the model param-
eters. Under the BN configuration menu, the user sets up three 
parameters: Node, Structure, and Conditional Probability Table. 

In the Node Configuration menu (see Figure 7 (a)), the user 
can choose variables and their sizes. This allows the model to be 
run with different numbers of variables, thus allowing “what-if ” 
type simulations. Nodes represent variables. The Structure Con-
figuration menu has two options (shown in Figure 7 (b)): The 
user can input a user-created network structure file or the model 
can learn the network structure from observed data (this option 
provides ease of use). Moreover, users enter the number of agents 
to be entered to the simulations for each agent type in a text file. 
For example, there are four agent types defined by the user cor-

responding to each agent type (three household agents type and 
one commercial firm type). Conditional probability tables also 
are learned from the data. Therefore, users only need to define 
the sample size to be chosen from the training data.

The resultant BN structure (learned from the data) for 
each agent type is displayed by the GUI as shown in Figure 8. 
Medium-income and low-income agents’ decisions are affected 
by the variable describing proximity to town centers. Proximity 
to recreational areas does not have a direct effect on high-income 
agents’ decisions according to the learned BN structure. Dwelling 
types are an important factor for high-income agents’ decisions. 
Low-income and medium-income agents, on the other hand, 
have much less choice in their residential decisions and are likely 
to attach more importance to the availability of rental opportuni-
ties. The learned BN structure also suggests that the population 
density variable does not have a direct effect on the locational 
choice of the agents.  

After the structure of the BN is configured, the next step 
involves estimating conditional probability table parameters using 
the CPT Configuration menu (see Figure 7 (c)). To achieve this, 
the user selects the learn button and the GUI runs the parameter 
learning algorithm. After the BN is completely set up, the urban 
environment is created for the agents using the Environment menu 
(Figure 7 (d)). This is done by reading the ArcGIS shapefile (.shp) 
for the environment of the study area, finding the neighborhoods 
for each polygon in the file, and specifying the radius of one 
kilometer for the neighborhood. 

Once these parameters are set, the model is ready to run using 
the main menu (Figure 7 (e)). Population projection data were 
obtained from Metro Vancouver (2011) and incorporated for each 
year corresponding to each time step of the model simulations. This 
defines the total number of agents used by the BNAS model. In 
addition, the number of iterations and scenario types are chosen at 
this stage. There are three available scenarios with different policy 
settings. The model also allows for the addition of dynamic variables 
into the simulation through the Dynamic Variables menu (Figure 
7 (f )).  The user defines which variables are dynamic and at which 
iteration these variables will be changed. The remaining tasks are 
implemented within the BNAS model algorithms. 

In this example study area, a dynamic variable is defined 
by adding new roads to the transportation network, which will 
alter the distance variable in the model. The BN, with each as-
sociated agent, recalculates the conditional probabilities of the 
distance variable. Thus, the BN model now is changed. Agents 
adapt themselves to the changing conditions by recalculating the 
conditional probabilities.

The population density map is displayed at the end of each 
simulation iteration. When the simulation is complete, the final 
resulting map of land use is displayed on the screen. After a 
scenario type is chosen, users can display land-use and population 
maps for each scenario and iteration with options for selecting 
any iteration and color for the map categories. With the tabular 
output option, users can compare urban land-use changes with 
the change graphs and tables. 

Table 1. The three urban development scenarios and their associated 
urban policies 

Compact  
Growth 
Scenario

•	 Promoting growth around existing urban 
areas through tax

•	 deductions that result in lower land prices 
and rents

•	 Applying residential density constraints (ac-
cording to the city of Surrey’s goals)

•	 Land-use zoning controls
•	 Infill development on already urbanized 

land
•	 Encouraging new neighborhood centers

Environmental 
Growth 
Scenario

•	 Excluding ALR and green zone from devel-
opment

•	 High taxes on natural areas that result in 
high land prices and rents

•	 Land-use controls limiting construction 
permits

•	 Infill development on already urbanized 
land

Sustainable 
Growth 
Scenario

•	 Promoting growth in existing urban areas 
through tax deductions that  result in lower 
land prices and rents

•	 Applying residential density constraints (ac-
cording to the city of Surrey’s goals)

•	 Land-use zoning controls
•	 Excluding ALR and green zone from devel-

opment
•	 High taxes on natural areas that result in 

high land prices and rents
•	 Limiting construction permits
•	 Infill development on already urbanized 

land
•	 Encouraging new neighborhood centers
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Figure 8. Learned BN structures of the agents in the BNAS model

Figure 7. GUI with various menus for implementing the BNAS model
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Simulation Outcomes
Compact Growth Scenario simulation outcomes are presented in 
Figure 9 with the initial land-use map for the year 2001 Figure 9 
(a) and the simulated land-use map for the year 2031 Figure 9 (b). 
Some of the agricultural areas have been converted to medium-
density residential uses that can be identified by visual comparison 
between maps in Figure 9 (a) and Figure 9 (b). However, new 
town centers proposed by the Surrey Community Plan (Figure 
6) did not emerge in this simulation. 

To demonstrate the usefulness of the BNAS model as a 
part of a PSS in a real-world application with an existing com-
munity plan, the system was run as a policy generator to find the 
necessary policies that would lead to the emerging of new town 
centers proposed by the Surrey Community Plan at the end of 
the simulations in 2031. The results from this intermediate run 
as a policy generator indicate that new employment opportunities 
should be created around those town centers. Using the Dynamic 
Variables, new employment opportunities have been added to 
the mid iterations sequentially, and the model was run with the 
new policy settings. 

Users can create the policy file in the ArcGIS shapefile format. 
The model uses policy-intervention maps for each scenario in 
which levels of policies are implemented. For each policy, there 
is a policy-intervention map that is entered into the system. The 
figures show a combined policy-intervention map for each sce-
nario because of the size limitations of this paper. Because one 
spatial unit can have more than one policy intervention, the levels 
show the degree of this intervention in the figures. High levels 
show more policy interventions, i.e., more than one type of policy 
intervention. For example, if one spatial unit has high taxes and a 
limit on construction permits, then the policy-intervention map 
shows a low level to medium level of policy intervention. If one 
spatial unit includes all the policy interventions, then the policy 
intervention map shows high policy intervention. If the spatial 
unit has only half of the policy interventions, then the map shows 
medium policy intervention.

Figure 9 (c)  summarizes the necessary policy interventions 
needed in the compact scenario to produce the new town centers 
that are called for in Surrey’s current community plan. Figure 9 
(d) shows the final land-use map after running the model for 
policy intervention.

A cross-tabulation method is used for comparing the pro-
posed and simulated land-use maps. Both vector–GIS format 
simulation maps were converted to raster format and then com-
pared cell by cell to calculate a Kappa index. To calculate a Kappa 
index, numbers of agreed and nonagreed spatial units were used 
for they do not change shape between the maps. As a measure of 
comparison, a Kappa index varies between -1 to 1, where a Kappa 
index of 1 indicates perfect agreement between two maps. The 
visual inspection of the maps and a Kappa index of 0.91 indicate 
that the model predicted most of the land use envisioned by the 
community plan for the year 2031.

The results also indicate that the compact growth scenario 
simulated more compact patterns as pointed out by the increase in 

the high-density and medium-density residential areas (see Figure 
10 (a)). Results show that there are nine times more high-density 
areas in 2031 than in 2001 under this scenario. In addition, low-
density areas decreased by 68 percent and medium-density areas 
by 60 percent at the end of the simulation period.

Figure 11 presents land use–generated simulations for the 
Environmental Growth Scenario. Although compact densities were 
obtained in the existing urban core, agricultural areas, currently 
under conservation, were seen to attract development. Thus, the 
BNAS model was run again (i.e., two simulations were run—
one with forward inference and one with backward inference) 
to identify necessary policies to prevent urban expansion on 
protected areas. The model suggested that an increase in taxes 
on development in natural areas and more infill development of 
urban land in the central neighborhood would achieve this goal. 
The land-use map results are shown in Figure 11 (b).  They sug-
gest that most of the agricultural areas do not become developed. 
Results indicate that high-density areas increased seven times and 
low-density areas decreased by 26 percent in the period from 2001 
to 2031 (shown in Figure 10 (b)). 

Sustainable Growth Scenario simulations for year 2031 are 
presented in Figure 12. Lighter yellow areas illustrate low-density 
urban areas while darker brown represents higher densities. Agri-
cultural areas were protected and most of the growth occurred 
around the existing urban areas. As a policy input, the BNAS 
model used Surrey’s map of environmentally sensitive areas to 
create a classification of high sensitivity, medium sensitivity, or low 
sensitivity. High-density areas show a steep increase (ten times) 
in size by the end of the simulation. Low-density areas decreased 
by 45 percent in total and medium-density areas by 53 percent 
in total during the period from 2001 to 2031 (see Figure 10 (c)).

After analyzing the results, urban planners and policy builders 
can make necessary decisions. They can formulate policies that 
lead to their desired future land-use outcomes. For example, if 
they want to take the compact growth approach, they can ana-
lyze the model policy map (see Figure 9 (c)) and use it in their 
land-use plans.

The overall comparison of the changes in urban areas for all 
scenario types at the end of simulations for year 2031 is presented 
in Figure 13. The Environmental Growth Scenario results generate 
more urban areas than do other growth scenario simulations. The 
Environmental and Compact Growth Scenario simulations have 
more high-density areas than do the Sustainable Growth Scenario 
simulations. Medium-density areas have been decreased in all the 
scenario outcomes.  They have been converted into high-density 
areas. Low-density urban areas have diminished in all simulation 
results but to the greatest degree in the Compact Growth Scenario. 
Furthermore, medium-to-high density areas indicate small in-
creases in the Compact and Environmental Growth Scenario results 
but decreased in sustainable results. 

For the purposes of testing the BNAS model, the results were 
compared with the city of Surrey’s Community Plan map. Most 
of the future development areas designated by the Community 
Plan were indeed selected in BNAS model outcomes. However, 
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Figure 9.  (a) Land-use map of the study area for 2001; (b) Compact Growth Scenario results for the year 2031 land-use map; (c) policy 
intervention map; (d) final land-use map after running the model for policy generation
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Figure 10.  Graph comparing all iterations for (a) Compact Growth Scenario; (b) Environmental Growth Scenario; and (c) Sustainable Growth 
Scenario
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Figure 11.  (a) Land-use map of the study area for 2001; (b) Environmental Growth Scenario results for the year 2031 land-use map; (c) policy 
intervention map
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Figure 12. (a) Land-use map of the study area for 2001; (b) Sustainable Growth Scenario results for the year 2031 land-use map; (c) policy 
intervention map; (d) final land-use map after running the model for policy generation
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urban densities change depending on the scenario employed. The 
South Newton area (Area D in Figure 6) is designated as a new 
urban neighborhood by the plan, for example. The Environmental 
and Sustainable Growth Scenarios envision high-density urban 
development in this area. However, the Compact Growth Scenario 
generates more high-density neighborhoods in the city center and 
existing urban areas than in the South Newton area.  

The Port Kells area (area A in Figure 6) is defined as hav-
ing potential for long-term development by the plan. Only 
the Sustainable Growth Scenario results show medium-density 
development in this area while the others generate low density. 
Grandview Heights (area F in Figure 6) is another area designated 
as potential growth area on which the Compact Growth Scenario 
generated a medium-density urban development while the others 
generate low density. These comparisons indicate how differ-
ent scenarios with different policy combinations can affect the 
locational choices in, and thus the density of, urban areas. Using 
the BNAS model gives policy makers and urban planners the 
opportunity to see the consequences of different policy interven-
tions. Therefore, the BNAS model should be a part of a PSS for it 
improves decision-making practices, and it also can be used as a 
flexible, user-friendly tool for answering “what-if”–type questions.  

Conclusion
The aim of this study is to test the capability of an agent-based 
model, particularly the BNAS model, to be used as a policy gen-
erator within a PSS framework. The model generates dynamic 
land-use change and was used to apply land-use scenarios that can 
be explored by urban planners. The BNAS model functionality 
was tested in real-world situations as a part of a PSS for land-use 
planning practitioners. The BNAS model uses GIS, Bayesian 
Networks (BNs), and agent-based approaches incorporated in 
a PSS framework to simulate future urban growth and urban 
polices related to the study region. The model relies on BNs to 
represent complex spatial relationships between numerous land-
use drivers that affect urban growth. Agents’ decision making 
was defined using causal relationships between model variables 

in the context of existing and potential future urban policies. 
The proposed BNAS model as a part of PSS is open to external 
inputs to simulate the outcomes of alternative policies for each 
scenario. Because environmental and socioeconomic conditions 
and related policy goals are location-specific, this study developed 
a general framework and applied it to a specific, policy-relevant 
context of the city of Surrey, British Columbia. The simulations 
were used as laboratories to explore the consequences of different 
urban policies. The BNAS model represents a spatial and dynamic 
approach that enables planners to view and analyze the future 
outcomes of current decisions and policies before they are put into 
action.  It has the ability to help improve planners’ fundamental 
understanding of the dynamics of land-use change. The results 
reveal that the BNAS model–based PSS framework can be used 
as a policy generator—a unique feature that allows users to enter 
a desired land-use pattern and use it to identify the policy options 
that are required to achieve the desired land-use pattern. 

Comparing the learned structure of the BNAS model with 
questionnaire surveys is the next step for this work. Further-
more, adding significance tests to the simulation results would 
be beneficial.
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Introduction
Debates on the value of urban models in metropolitan plan 
making are not new. Throughout this debate, however, modelers 
and planners have developed techniques that have improved (1) 
the predictive abilities of models, (2) the integration of multiple 
models such as land use and transportation, and (3) the visualiza-
tion of outputs and the development of useful indicators. These 
efforts have added to the toolbox and to the value of the tools 
in assessing and communicating impacts of plans and decisions. 

Many classifications of models and modeling approaches 
have been made (Klosterman 2000, Batty 1994). According to 
Batty (1994), modeling as a science of planning and modeling as a 
strategic tool to further cooperation are distinct approaches. While 
one is driven to better explain the relationships between the 
components and characteristics of the built environment, the 
other should facilitate decision making in a public process by il-
luminating various complexities of urban systems and stakeholder 
values. In this paper, we focus on the latter by establishing and 
addressing a gap between modeling and practice.

Much work has been performed in this area, particularly in the 
development of planning support systems (PSS) that can capture a 
range of plans and policy specifications, multicriteria decision analysis 
models that compare outcomes according to stakeholders’ values, 
and scenario planning approaches that provide a framework for the 
process. In practice, these approaches are used in combination to 
generate and compare alternative visions of the future (Chakraborty 
2010). From these analyses, often a single desired, or preferred, 
future is selected. Policies then are developed to help achieve that 
future (Hopkins and Zapata 2007, Avin and Dembner 2001). 

Planning Support Systems and Planning Across Scales: 
Comparing Scenarios Using Multiple Regional Delineations 

and Projections

Arnab Chakraborty, Sabyasachee Mishra, and Yong Wook Kim

Abstract: Planning support systems (PSS) often employ urban models that simulate and evaluate impacts of plans. However, 
their application to plan making is, challenging when issues transcend local jurisdictions and model assumptions are contested 
by stakeholders. Neglecting the role of assumptions and specifications, especially when they are important and uncertain, can 
diminish the efficacy of plans. In this paper, we use the principles of scenario analysis to illustrate the impacts of two such impor-
tant considerations—forecasts and regional boundaries—on model outcomes and related decisions. We use Montgomery County, 
Maryland, as a case and leverage a model developed for a larger region, i.e., the state of Maryland and vicinity. We develop two 
sets of scenarios—one where the county (a local government) freely competes with its neighboring jurisdictions for development 
and another where a higher-level  (i.e., a regional or state) agency controls the extent of development that the county can receive. 
The scenarios are constructed using different specifications for regional boundaries and results in different amounts of growth 
in the county—both rare practices in scenario analysis with models. We then compare the outcomes on a set of indicators and 
draw implications for planning. We conclude with the argument that planning agencies should compare future scenarios, not 
just with different desirability, but also with different sets of assumptions and regional formulations.

In the case of large regions, implementing resulting policies 
coherently requires buy-in from a wide variety of stakeholders 
that can be difficult to achieve and the inability to do so can 
leave the plans less effective than desired. Moreover, when such 
unitary plans or policies are based on important and yet uncer-
tain assumptions, their effectiveness can vary a great deal on the 
actual variations in assumed trends. This limits the achievement 
of preferred futures because of lack of decision makers’ control 
over external forces (Chakraborty et al. 2011) and also can 
produce unintended or undesirable outcomes. Another aspect 
of the conventional practice to identify and make policies for a 
preferred future is that it is a useful tool to mobilize community 
support towards a shared vision. A process oriented to such 
ideas can bring divergent interests together. While this purpose 
has merit, it has been argued that given the political nature of 
plan making, urban models should also be used to illuminate 
the complexities of urban systems. This includes evaluating the 
impacts of competing and alternative choices made by different 
actors1 and, in turn, providing each stakeholder unique insights 
into how plans and decisions, under different assumptions and 
conditions, can affect each stakeholder’s specific interests and the 
overall regional outcome. A way to advance this purpose, as we 
argue and demonstrate, is to recognize the role of assumptions and 
other specifications in the model outcome. We develop alternative 
scenarios to illustrate how considering different assumptions and 
model specifications can help identify useful strategies suitable 
to heterogeneously governed regions. This, we conclude, adds 

1Actors are the decision makers and stakeholders at city, county, 
state, and federal levels. 
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value, especially to large regions and planning processes with 
multiple stakeholders. 

Problem Statement: We posit the following:
When models attempt to address challenges that transcend ju-
risdictional and other boundaries, specifications can limit the 
outcome of an analysis, sometimes to the detriment of subsequent 
decisions and plans. Developing and examining scenarios that 
represent outcomes of different assumptions and specifications 
can illuminate these limitations and allow identifying and 
equipping us with necessary strategies for multiple possible 
futures. Furthermore, identifying and adopting suitable and 
complementary strategies within the existing fragmented juris-
dictional setup can be a better approach for regionally coherent 
policies than attempting to implement a consensus-based plan 
for all agencies in the region.

In the next section, we establish the limitations of current ap-
proaches to modeling and scenario planning in multistakeholder 
processes. Then we explain the objective of the paper. In the 
following section, we discuss our dataset and models and choice 
of study area. Then we present our analysis and results. We offer 
some concluding thoughts in the final section.

The Gap between Urban 
Modeling and Planning 
Practice 
Multiple studies over the years have reviewed and critiqued the 
role of urban models and PPS in planning practice (see, for ex-
ample, Klosterman and Brail 2001, Geertman and Stillwell 2003, 
Geertman 2006, Hopkins and Zapata 2007). In this section, 
we establish how they wrestle with the complexities of planning 
practice in large regions, specifically, those surrounding forecast-
ing growth and selecting regional boundaries. We organize the 
relevant literature into these streams: (1) potential of scenarios 
to address complexities of plan-making processes; (2) limitations 
with respect to the use of PPS and (3) their underlying modeling 
approaches; and (4) spatial planning and the confounding effects 
of institutional rigidity. 

Scenarios, Complexity, and 
Plan-making Processes
In the United States, most urban plans are outcomes of strategic 
decision-making processes involving multiple actors. Planning 
processes have attempted to engage these actors through the evalu-
ation of alternatives that consider a range of choices, interests, and 
viewpoints. PSS have provided analytical and visual mechanisms 
to structure these processes. As a framework, evaluation of alterna-
tive outcomes of decisions, i.e., scenario analysis, has been central 
to the practice of plan making (Chakraborty et al. 2011). From a 
strategic standpoint, scenario analysis has been used to think about 
multiple facets of the problem simultaneously and as a tool for 
addressing the uncertain future in light of the limited cognitive 

and computational capacity of individuals and organizations. In 
particular, it is a tool that fosters imagination as well as critical 
thinking about how a future might unfold. Since its pioneering 
application by the RAND Corporation as epitomized by Kahn 
(1962), it has been used widely in various disciplines ranging 
from business to military applications (Van der Heijden 1996). 

Smith (2007) argued that scenarios can be used in a number 
of ways and in the regional planning context should be used 
mostly as a tool for prioritization, oversight, and conversation. 
Where a participatory paradigm is important, using scenarios as 
a means of thinking collectively about what to do in different 
futures should foster thinking of a contingency nature, i.e., if 
_____, then _____. Neuman (2007) has discussed how scenario 
planning can encourage planners to dissolve geographic and 
conceptual boundaries and consider impacts and solutions that 
extend beyond them. Avin (2007) suggests that scenarios should 
inform urban plans by creating a platform for public engagement 
of various groups.  Building on earlier work, Avin articulates a 
12-step mechanism that includes constructing possible futures as 
distinct from desired futures. He suggests that these futures with 
intervention options will provide a framework to evaluate them. 
Nevertheless, the case studies that follow these prescriptions of 
the process do not make clear how these interventions are dif-
ferent and distinct from the forces that are producing uncertain 
effects and how one should make plans, given these interactions.

In the practice of metropolitan planning, however, the use of 
scenario planning has been skewed toward formulating an argu-
ment for picking a “preferred future” as opposed to the status quo 
or business as usual (see, e.g., Council of Fresno County Govern-
ments 2009), in direct contrast with the contingency framework 
of scenario planning. Also, as this review will demonstrate, the 
participatory framework not only should be capable of compar-
ing alternative scenarios, but also should serve other purposes, 
such as creating plausible alternatives, facilitating questioning 
institutional rigidities, and creating radical changes in external 
forces. The PSS used in these approaches also should be able to 
handle these considerations effectively.

Planning Support Systems 
and Complexity
In metropolitan planning with its interacting temporal and spatial 
phenomena, it is almost implausible to think about scenarios with-
out resorting to some version of a PSS. Many of these tools offer 
planners the ability to view complex data, to forecast potential 
outcomes of decisions and anticipate their implications, and more 
recently, to communicate these to the wider public. Despite their 
promise however, PSS have been largely used to—and designed 
to—facilitate plan evaluation not plan making (Batty 2004). 

This disconnect is evident in many of the critiques of PSS. 
Avin (2007) warns that they should be used only to aid plan-
ning processes and to create a platform for engaging with diverse 
stakeholders, not to define the process. He adds that indetermi-
nate factors are the key and those most likely to influence future 
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outcomes should be included. Such considerations should be 
generated through the planning process and multiple sets of 
variables should be tested. In practice, however, the indeterminate 
factors often are given less than due consideration and usually 
are externally specified. For example, the Metropolitan Planning 
Organizations (MPOs) are required to identify the most likely 
25-year growth forecasts within their region, evaluate the impacts 
on the infrastructure, and then plan for them. The processes 
often are separated and developing specifications are a precursor 
to, and not a part of, the planning process. At other times, they 
are arrived at too rapidly or too early in the process and once 
estimated they are termed “givens.” The givens then carry through 
the rest of the process, in effect solidifying and multiplying the 
potential for error. 

Scenarios analysis literature shows us how to tackle this separa-
tion and linearity by using the notions of strategic thinking (van der 
Heijden 2006). For example, Hopkins and Zapata (2007) suggest 
that planners should move away from the idea of preferred futures 
and replace it with analysis of possible futures that incorporate more 
than the most likely future conditions. Such a move can ensure that 
a wider set of uncontrollable effects and conditions can be consid-
ered (e.g., supraregional factors). They admit that such approaches 
would need planners to make multiple plans. Another aspect of this 
is balancing increasing technical sophistication of models with the 
needs of communicating model outcomes in ways that can facilitate 
decision making. For example, Batty (2004) has argued that the 
development of most models has been driven by advancement in 
GIS and remote-sensing technologies but are still only abstractly 
related to cities as emergent complex systems. Practical applications 
for planning processes need to be driven by bottom up–driven 
concerns. As Batty writes, “[T]echnology interacts with policy in 
diverse, symbiotic ways which develop tensions that get resolved 
by changes in culture and context as much as by adaptation of the 
science behind the technology or the technology itself” (p. 329). 
Thus “good” models are those that can be adequately adapted to 
the problems at hand in the local or specific context.

Klosterman (2001) reviewed a specific GIS-based PSS called 
What if? While he notes the utility of PSS for decision makers 
seeking to broaden and inform public dialogue, he adds that its 
effectiveness is ultimately limited by the user-specified assump-
tion. Similarly, Geertman (2006) has suggested that technology 
often can outpace planners’ capabilities and framing of prob-
lems requiring a dynamic interconnected, with each informing 
the other in an adaptive utilization, ultimately dependent on a 
conceptual framework sensitive to context. The above critiques, 
and there are many others, suggest that it is critical to recognize 
the capacities and limitations of PSS and, ultimately, choose an 
approach that captures the important complexities of the context.

Land-use Models in 
Planning Support Systems
PSS are often at the interface of underlying models and the deci-
sion-making processes. The underlying models are characterized 

by their heterogeneity, hierarchical structuring of urban phenom-
ena, and approaches to deal with exogenous factors. They can be 
organized into two broad categories: top-down and bottom-up 
models. Top-down models employ regression, econometric, and 
statistical approaches that represent system relationships between 
aggregate variables depicting best fit of the data. Because of its 
generalized nature, top-down models are useful for revealing 
relationships in land-use data and for forecasting purposes. On 
the other hand, bottom-up models such as agent-based or cel-
lular automata models start from a general understanding of the 
low-level processes and elements, and generate aggregate system 
behavior by simulating the individual entities in the system.

Top-down models often estimate regional growth projection 
first and then allocate it among the constituent subgeographies. 
In the United States, this practice is employed to develop met-
ropolitan-level or state-level projections that then are allocated 
down to the county level and sometimes further down to traffic-
analysis zones. Top-down models have been used in management 
of natural resources  (Castella et al. 2007), simulation of system 
dynamics in multiscalar land-use variables (Veldkamp and Fresco 
1996, Brown et al. 2000), and a host of other applications (see 
Hensher and Button 2004). On the other hand, bottom-up ap-
proaches can take top-down outputs as given and look at the spa-
tial impacts of them. They also have received significant attention 
in local-level analysis and decision making (for applications, see 
Landis 1994, Landis and Zhang 1998, Waddell 2002, Deal and 
Schunk 2004; for reviews, see Hensher and Button 2004, Kim 
and Hewings 2011). The choice of a particular model depends 
on many factors, such as the needs of the project, the availability 
of data, and user discretion. Still, both kinds are needed to some 
extent in many planning processes and their insularity can be 
problematic and deserves careful consideration. 

Spatial Planning and the 
Confounding Effect of 
Institutional Rigidity
Finally, because models attempt to imitate real-world phenomena, 
they can easily duplicate, and perpetuate, some of its limitations. 
For example, institutional rigidity, an often-discussed barrier 
to regional planning (Teitz and Barbour 2007), has become a 
part of how many models specify and test policies. For example, 
land-use impacts are often tested last and at a locality level. The 
high likelihood of these impacts to change as regional policies 
are changed, and their interdependence with other regional and 
local forces, often ignored at the local-level analysis. Though these 
considerations sometimes simplify decision making, they also can 
limit our anticipation of potential challenges and opportunities. 

In addressing these challenges, advancing models alone will 
not be sufficient. To anticipate adequate variety in future condi-
tions and implementation frameworks, planning approaches also 
will need to encourage and sustain participation. They will have to 
provide a platform for sharing divergent viewpoints in a pluralistic 
society and, when combined with evolving tools, help to develop 
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multiple visions for the future that look beyond the traditional 
limits of scale, time horizon, and disciplinary and institutional 
boundaries. The literature provides many examples where at-
tempts have been made to bridge this gap between empowered 
advocacy and comprehensive rational planning. It does so most 
often by utilizing technical tools to empower the stakeholders 
in the planning process through imagining a normative future 
(Borjeson et al. 2006, Myers and Kitsuse 2000, Porter 1985). 
These principles have been used worldwide in many planning 
processes, including the Norwegian Long Term Program (NLTP), 
Sustainable Seattle, Oregon Shines, Metropolitan Tunis, and 
Envision Utah (AtKisson 1996, Barbanente et al. 2002, Grow 
and Matheson 2006, Kissler 1998). 

In addition to unstructured deliberation, several other 
methods can be applied. One approach sensitive to different 
stakeholder values is multicriteria decision analysis (MCDA). 
Malczewski (2006) shows how GIS and MCDA allow diverse 
(but interdependent) decision makers to insert value judgments 
and receive feedback on their implications, allowing policy mak-
ers to highlight trade-offs between alternatives. Innes and Booher 
(1999) look at the need for consensus-building planning processes 
to cope with complex adaptive systems. They suggest that such 
a framework allows for experimentation, building shared mean-
ing, and change.

Still additional considerations may be necessary. For example, 
metropolitan planning organizations in the United States need 
to follow a single set of growth projections for transportation 
planning according to federal requirements for funding. As a 
result, scenarios (both land use and transportation) have to ac-
commodate one set of projections—no more and no less. Unless 
these requirements change, such agencies have little choice but 
to use unitary forecasts. They can, however, attempt to consider 
the wider interactions with other agencies and interdependencies 
between land use, transportation, and other systems when arriving 
at their assumptions. 

In summary, much has been written about how planning 
processes use scenario analysis, PSS, and urban models and how 
their use many be limited by the nature of approaches and insti-
tutional consideration, among others. To overcome the resulting 
challenges, planners will have to balance the sophistication of their 
tools with accessibility and nimbleness. We argue that some of 
these challenges can be addressed by systematically considering 
complexities such as multiple sets of projects and interregional 
and intraregional interactions, and moving beyond the traditional 
static definitions of a model region. Scenarios have specific im-
plications for plan making and, as we show next, how they are 
constructed affect the outcomes and subsequent plan-making 
considerations. Understanding a broader range of uncertainties, 
as we will show, can allow for better assessment of varying future 
challenges and as a result can lead to more effective plans.

Analytical Framework
Research Objective
In this paper, we use the principles of scenario analysis to illustrate 
the impacts of two such important considerations—forecasts and 
regional boundaries—on model outcomes and related decisions. 
We use Montgomery County, Maryland, as a case and leverage 
a model developed for a larger region, i.e., the state of Maryland 
and vicinity. We develop two sets of scenarios—one where the 
county (a local government) freely competes with its neighboring 
jurisdictions for development and another where a higher-level 
(i.e., a regional or state) agency controls the extent of develop-
ment that the county can receive. The scenarios are constructed 
using different specifications for regional boundaries and result 
in different amounts of growth in the county, both rare practices 
in scenario analysis with models. We then compare the outcomes 
on a set of indicators and draw implications for planning. 

Data and Methods
The models used here have been developed over time by a number 
of partnering organizations (for details, please see Knaap and Frece 
2006, Chakraborty 2010, Mishra et al. 2010, Chakraborty et al. 
2011). Our entire modeling area covers the state of Maryland in 
the United States and some surrounding counties (see Figure 1). 
One of the purposes of our modeling effort has been to explore 
alternative futures for the state of Maryland with the intent to 
identify policies that maximize the likelihood of more desirable 
future outcomes. 

We briefly summarize the modeling framework and method-
ology in the following section. The framework is a loosely coupled 
set of models that work at different scales (national to local), in 
different areas of specialization, and for different purposes. They 
interact, however, as shown in Figure 2 and as explained in the 
following section, and allow us to generate different sets of fore-
casts, look at their effect on land-use and transportation networks, 
and assess their impact using a set of governmental services and 
quality-of-life indicators. 
•	 National econometric model:  The national econometric 

model consists of two submodels: (1) Long Term Inter-
Industry Forecasting Tool (LIFT), a macroeconomic input-
output model operating at the U.S. national economy level 
forecasts more than 800 macroeconomic variables that 
are then fed into (2) State Employment Modeling System 
(STEMS) to calculate employment and earnings by industry 
for all 50 states and the District of Columbia. Output from 
LIFT serves as input to STEMS.  Results from the STEMS 
model then are allocated by region (political boundaries are 
imprecise predictors of boundaries of labor markets and 
economic regions) using current proportions of state-level 
forecasts for each sector. A detailed description of LIFT and 
STEMS can be found in the literature (McCarthy 1991, 
INFORUM 2010).

•	 Regional model: The regional-level model depicts land-
use variables at the county level. At the regional level, the 
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forecasting approach is based on a near-total reliance on 
empirically calibrated relationships. The calibrated model 
involves 40 equations using progressively more inclusive sets 
of predictors.  The allocation model incorporates review of 
the benchmark forecasts (Hammer 2007).

•	 Local model: The local model, titled Landuse Evolution 
and Impact Assessment Model (LEAM), uses a state-change 
structured gridded surface whose conditions evolve over 
time, similar to other cellular automata (CA) technologies 
(Deal and Pallathucheril 2003).2 The LEAM grid surface 
is not flat, however, but gains a “hilly” topography based 
on both physical and socioeconomic constraining factors. 
It incorporates techniques that calculate a probability to 
represent the potential of each cell (900 m2 or 0.25 acre) 
to change from one land-use category to another. This 
probability of change is influenced by local interactions (e.g., 
the accessibility of the cell to a predetermined characteristic 
of its neighborhood or an “attractor”), global interactions 
(e.g., the state of the regional economy), and other causal 
mechanisms (e.g., social forces). These produce suitability 
scores that contribute to the grid surface relief and affect 
subsequent allocation of development.

2 For more on LEAM, see www.leam.uiuc.edu/maryland. 

Figure 2. Loosely coupled modeling framework

Figure 1. Broader region for which model tool has been developed  
Source: National Center for Smart Growth Research and Education at the University of Maryland
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Agencies that use models such as those listed previously often 
work with specific requirements. For example, MPOs use the most 
likely 25-year employment and household forecasts to test the 
stresses on travel network. Similarly, local governments updating 
their land-use plans may use projections from state economic 
agencies as given to make policies that accommodate that growth 
or affect it. The purpose of this paper, in part, is to demonstrate 
that while current approaches are useful for the purposes they 
serve, additional understanding can be gained by relaxing con-
strained projections and testing multiple regional extents. 

We specify two scenarios—one where the county (local 
government) freely competes with neighboring jurisdictions 
and another where the regional/state government controls the 
extent of development that the locality can receive. For the first 
scenario, using our econometric model, we generate county-by-
county projections, further detailed into various housing and 
employment categories using our regional model. For the second, 
we aggregate county-level projections to the state level. We also 
specify our land-use models at two scales: one at the level of each 
county and another at the statewide level.

We selected the case of Montgomery County, Maryland, to 
demonstrate our point. We could have selected any county for our 
analysis, but Montgomery County was selected for its rich and 

Figure 3. Employment growth Figure 4. Household growth

Table 1. Temporal Development Patterns

Attributes

2010 2030 (2030–2010)
Constrained-
Development

Competitive-
Development

Constrained-
Development

Competitive-
Development

Constrained-
Development Competitive-Development

HH 363,285 357,418 437,464 435,057 74,179 77,639
Retail (a) 72,097 72,208 87,268 94,147 15,171 21,939
Office (b) 275,831 276,415 333,797 361,792 57,966 85,377
Industrial 
(c) 43,283 43,276 52,391 56,838 9,108 13,562
Other (d) 152,268 152,992 184,198 202,266 31,930 49,274
Tot. Emp. 
(a+b+c+d) 543,479 544,891 657,654 715,043 114,175 170,152

varied planning history, its large size, and its high projected growth 
in the county. To develop the first scenario, we run the land-use 
model only for Montgomery County and use the projections that 
are generated for Montgomery County alone, without regard for 
any interaction with neighboring jurisdictions. We argue that this 
closely represents a state-imposed growth constraint and call it 
the Constrained-Development Scenario. For the latter, we use the 
aggregated state-level projections and run the state-level land-use 
model. We argue that this represents competing behavior among 
counties for new growth and call it the Competitive-Development 
Scenario. This scenario forces competition among municipali-
ties for growth without regard to the specific amount of growth 
projected for each of these jurisdictions by the economic model. 
From this run, we extract the outcome for Montgomery County 
and compare it with the stand-alone run for Montgomery County. 
We compare the outcomes on a few simple indicators. All the 
models use year 2000 as the base year and are run for every five-
year interval, up to 2030. 

Analysis
The results of model runs are summarized in Table 1. Two sets 
are household, and employment totals at a county level, for each 
of the two scenarios, Constraint-Development Scenario and 
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Competitive-Development Scenario. These results also were 
available at a cell level of size 90 m x 90 m. The employment 
data also is presented by four detail categories—retail, office, 
industrial, and other. Each scenario run is modeled for two time 
horizons on year 2000 data: (1) most recent year or 2010 and (2) 
for the planning horizon 2030. The future year is identified in 
conformance to the constrained long-range plan for the county 
and state. The model results show that Montgomery County will 
receive a higher amount of households and employment in the 
Competitive-Development Scenario run than in the Constraint-
Development Scenario (Table 1). The results suggest that given 
the flexibility of growth across all counties, and the possibility of 
moving to a new locality, Montgomery County will attract more 
households and employment in the Competitive-Development 
Scenario. This comes at the expense of the counties and happens 
because of Montgomery County’s higher attractiveness in terms 
of land-use and accessibility. 

The spatial distributions of household and employment 
growth in these two time periods for both scenarios are shown 
in Figures 3 and 4, respectively. The polygons in Figure 3 and 4 
represent Traffic Analysis Zones (TAZs), showing the numbers 
estimated from aggregation of the cell-level results. 

The new developments in both scenarios for both land-use 
types happen as expected. The most growth is in areas closer to 
the urban centers and next to existing modes of transportation. 
Areas next to transit stations as well as those with a high possibil-
ity of redevelopment get a high share of new employment. The 
overall higher attractiveness and, as a result, the overall higher 
demand for land, and the location of nearby counties where that 
new development is getting transferred from can be attributed 
to the differences seen between the two scenarios.

These differences in total amount and location of new 
development can be seen in the land-use change indicators. For 
example, the loss of agriculture and forest land for both model 
runs are presented in Table 2. As expected, we find the loss to be 
greater in the Competitive-Development Scenario than in the 
County-Constraint Scenario. The loss in agriculture and forest 
land estimation is built into the modeling tools that further uses 
the land-cover data in the CA-based allocation process. Figure 5 
shows the grid-level variations in the scenarios. The grids that are 
organized according to the amount of new growth received are as 
follows: (1) higher growth on County-Constraint Scenario, (2) 
higher growth on the Statewide Scenario, and (3) higher growth 
under both scenarios. The grid-level results can be used as a tool 
to visualize differences more specifically. 

Table 2. Montgomery County loss of forest and agriculture land (in 
square meters)

Attribute County Constraint Statewide

Forest Land 36,620,100 62,677,800

Agriculture Land 47,279,700 83,268,000

Conclusions
Futures are not necessarily given; they also are not necessarily 
created solely through purposeful action. They are a product of 
complex interactions of forces that we cannot control as well as 
decisions we make. Many authors have noted that even the most 
sophisticated and integrated models are not able to incorporate 
all variables of interest. Hopkins (2000) explains that numerous 
urban models have been developed based on different perspectives 
and theoretical foundations. Some simulate markets for land, 
housing, and labor, using preferences of households and firms 
based on past behavior with respect to prices. Still others rely on 
past probabilities of land conversions and seek an equilibrium 
solution. Some are dynamic, usually in discrete time intervals in 
which actions depend on the results of previous time intervals. 
In this paper, we use a combination of approaches to develop 
two sets of scenarios—one where a county freely competes with 
neighboring jurisdictions (Competitive-Development Scenario 
using a statewide run) and another where the regional/state 
government controls the extent of development that the locality 
can receive (Constraint-Development Scenario). The scenarios are 
constructed using different specifications for regional boundaries 
and also result in different amounts of growth in the county, both 
rare practices in scenario analysis with models. 

Our analysis has a number of general implications. It shows 
that assumptions are important and should be carefully chosen. 
And, if possible, multiple plausible sets of assumptions should be 
compiled to test the robustness of policies despite variations in 
assumptions. While similar in concept but different in applica-
tion, our study also shows that the choice of regional extents at 
which models are run affects the outcomes. This is important for 
a number of reasons. While many studies on limitations of local 
governance suggest regional coordination as a way to address 

Figure 5. Comparison of growth at grid level for both scenarios 
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multiple issues, the scales and composition at which such coor-
dination should happen often is unclear. Metropolitan areas often 
have been used as appropriate scales for most purposes, but with 
the evolving literature on other scales (for example, watersheds, 
megaregions, etc.), care should be taken in understanding how 
these ideas are used in formulating the study region. Or, more 
importantly perhaps, care should be taken that critical areas are 
not excluded from the modeled region. 

More specifically, our findings suggest that a state-imposed 
constraint on Montgomery County might be too low in its mag-
nitude and thus difficult to implement. It also suggests that in the 
lack of such constraints, higher amounts of undeveloped lands will 
be lost resulting in different challenges. The detailed location of 
development can also be used to argue for or against each set of 
policies. For example, though it is beyond the scope of this study, 
it is possible to imagine that a fixed development constraint might 
be difficult to implement without added political compromise that 
benefits the county in some ways. The presence of such conditions 
might complicate the outcome and, indeed, can change the cost/
benefit equation for an agency choosing whether to support the 
constrained or the competitive development policies.

Lastly, the scenario analysis proposed in the paper has prac-
tical implications in the state of Maryland. One example is the 
potential residential and commercial land use for the greater Life 
Science Center (LSC) proposed in Montgomery County. Based 
on existing, approved, and proposed development, LSC could 
yield a maximum of 9,012 additional dwelling units to comple-
ment a projected total of 52,500 jobs. The resulting ratio of 5.8 
jobs per dwelling unit is based on the existing housing in the 
greater LSC area (MNCPPC 2010). The Maryland Department 
of Transportation has concerns that such large-scale development 
might lead to insufficient transportation infrastructure to sup-
port such mixed land-use development. This is an example of 
the differences between the vision of the county planners and of 
the state planners for the future of Montgomery County. Such 
differences, depending on the outcome of a process, can lead to 
a range of outcomes, two of which have been modeled in the two 
scenarios presented in this paper. Recognizing these possibilities 
are important to the planning process. 

Another example is Prince George’s County’s Konterra Town 
Center, a planned mixed-use regional activity center that will 
include more than 4,500 residential units and more than 5.5 mil-
lion square feet of office, retail, and hotel uses to produce more 
than 10,000 jobs (PGCPD 2009). In contrast to Montgomery 
County, the state agreed to this development because it supports 
the construction of the Intercounty Connector (ICC), a major 
east-west access-controlled highway corridor connecting the two 
North and South Interstates, 95 and 270. The new development 
will have access to the ICC and will, in turn, become more at-
tractive. 

These examples illustrate the kind of decision-making con-
flicts and uncertainties that exist between land-use and transpor-
tation planning agencies in a large region. Our results show that 
considering a wider range of possibilities can provide better tools 

for those working on these challenges. This includes comparing 
future scenarios not just with different desirability but with dif-
ferent sets of assumptions and regional formulations.
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Introduction
In many cities, there is rising pressure on public parking spaces, 
particularly in areas with large amounts of housing constructed 
before the 1950s when car ownership began to rise sharply. Urban 
planning practice determines the type of parking places available 
(on-street parking, parking lots, private parking) and influences 
other characteristics of the parking spaces as well (price, security, 
pedestrian system quality). It is important that all these factors 
should be treated from the viewpoint of what the car driver per-
ceives. Taste heterogeneity is a major factor in this parking type 
choice, together with the journey purposes (shopping, working, 
visit) (Axhausen and Polak 1991). An impression of parking 
availability from the driver’s view can defer from reality (Laurier 
2005). A whole range of situational factors can influence the 
driver’s parking search behavior, mainly available parking spaces, 
trip purpose, walking time to destination, parking fee, and com-
fort. The perception of these factors can change with the elapsed 
time spent in search of a place. In neighborhoods in the city with 
safety problems, security also can play an important role in the 
choice of a parking place (Teknomo and Hokao 1997). We do 
not understand nearly enough about how individuals respond 
to parking policy interventions, nor how these responses interact 
with local circumstances, the availability of alternative transport 
modes, or alternative destinations (Marsden 2006).

A city influences the local drivers’ behavior and perception 
through the parking policy (Vlaamse Overheid 2008, Litman 
2008). Underpricing of on-street parking, for example, can elicit 
the behavioral reaction of drivers to cruise for on-street parking, 
which, in turn, can lead to an increase of congestion (Shoup 
2006, Anderson and de Palma 2007). Other examples are time 
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restrictions for parking and introducing resident parking cards 
in the city, to differentiate the parking possibilities for residents 
and visitors. These general restrictions should be fine-tuned and 
adapted to the local situation. 

Specific individual needs determine the value of an available 
parking space. That value can change in time as other parking 
spots become more interesting when search time is increasing. 
Drivers combine their previous knowledge with an evaluation of 
observed situational parameters, or they make assumptions based 
on former experiences. This creates a value for every parking 
place to a specific driver at a specific time. Some authors model 
this parking choice using a utility/disutility function (Arentze 
and Timmermans 2005). Many approaches for modeling park-
ing choice lack in behavioral influence for they assume perfect 
information knowledge of the system and efficient behavior 
(Thompson and Richardson 1998). 

Agent-based modeling (ABM) is an interesting computa-
tional modeling technique for the development of a parking 
model, because it is a flexible and dynamic way to deal with 
interactions between car drivers, the city, the traffic, and other 
road users. Simulated actions and interactions of autonomous 
individuals, following their own rules and interests, re-create 
a complex phenomenon and provide information on a higher 
level. One type of application is oriented toward the modeling 
of land-use policies and travel behavior choices (Shiftan 2008). 
Parking models using ABM have the advantage that the drivers’ 
(agents’) parking search behavior can interact on a microscale level 
with the environment (Benenson 1998 and 1999, Benenson et 
al. 2005 and 2008, Crooks et al. 2008, Martens and Benenson 
2008, Torrens and Benenson 2005).
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PARKAGENT is an agent-based model for parking in the 
city, simulating the behavior of each driver in a spatially explicit 
environment and capturing the complex self-organizing dynamics 
of a large population of parking agents within a nonhomogeneous 
(road) space. It is developed as an ArcGIS application and can 
work with a practically unlimited number of drivers (Benenson 
et al. 2008). In this model, cars enter the system, drive toward 
their destination, search for parking, park and stay at the found 
parking place, and then leave the parking place and the system.

The main objective of SUSTAPARK is to develop a model 
similar to PARKAGENT, including the local driving and parking 
behavior. A new module is proposed to simulate the agent charac-
teristics, with trip destinations and motives (activity scheduling), 
and more elaborate parking search behavior.

The paper is organized as follows. The first section is a 
description of the general concepts and structure of the model. 
We then discuss data needs, followed by the outcomes for a case 
study in the inner city of Leuven, Belgium. The paper ends with 
conclusions, discussing the potential of tuning agent-based park-
ing models to local circumstances.

The SUSTAPARK Model
SUSTAPARK is a spatiotemporal tool to model parking search 
behavior. Agents (car drivers) must have the ability to move over a 
network and park their vehicles to perform their planned activities 
during a day. The model creates a set of agents representing the 
total driving population entering and leaving the city throughout 
a normal working day. Every agent has an activity schedule and a 
parking search behavior. The activity schedule describes which trip 
the agent wants to make at a specific point in time. This serves to 
calculate an initial route (shortest path) from origin to destination, 
later repeatedly recalculated based on network parameters such 
as congestion. The parking search behavior determines when an 
agent starts searching for a parking place and consists of the rules 
followed when choosing a parking place. This choice depends on 
local parameters such as available parking places, price, distance, 
search time, etc.

Multiple agents use the road network and parking places. 
The traffic simulator models the traffic flows on the road network 
and the use of parking places.

The programming of SUSTAPARK is object-oriented using 
Java and was developed on the Eclipse platform.

Input
The model requires detailed data, both spatial and nonspatial. 
The spatial data include roads and parking places (parking lots, 
private parking, and on-street parking). The nonspatial data 
include parameters for creating agents, activity schedules, and 
their parking behavior. 

Roads 
Features from a GIS layer are imported and translated into a road 
network with roads, links, lanes (see Figure 1), and intersections 

based on the attributes of the features: a “from-intersection” 
identifier, a “to-intersection” identifier, the driving direction (one-
way, two-ways, or none), the number of lanes for each driving 
direction, and the maximum speed. The model translates each 
road in one link (one way) or two links (two ways) with one or 
several lanes. Entry/exit gates are intersections where agents enter 
or leave the network according to their activity schedules.

Parking Places 
SUSTAPARK creates three types of parking: parking garages/
complexes, private parking, and on-street parking, each of them 
connected to a lane. The required attributes are: (1) a road identi-
fier, (2) the distance from the start of the road, and (3) the side 
of the road, to couple each parking place to a position on a lane. 
Parking garages can hold more cars than on-street parking. They 
are connected to the lane at their entry or exit points.

Agents 
A local travel survey (Zwerts et al. 2005) reveals that the follow-
ing groups tend to follow different activity schedules: students, 
employees, retired people, unemployed people, people with liberal 
professions, people working in the household, tourists, and oth-
ers. The model uses a contingency table to display the number of 
agents with a particular activity schedule per agent type.

Locations 
Origins and destinations of trips are buildings with a certain 
function (office, residential building) and at least one access point 
on the road network. The model uses an attraction value of the 

Figure 1. Representation of a road consisting of links and lanes. The 
crossed zones represent parking places coupled to a position on a lane. 

Figure 2. Relationship between agent, activity schedule, activities, and 
location
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building for a specific motive. For example, the attraction of a 
school is calculated as its share in the total number of students 
in the city. Location, access point, and attraction value are stored 
in a GIS.

Spatiotemporal Activity Schedules 
Activity schedules consist of a list of activities with destination 
in or outside the city, derived from the local travel survey: going 
home, going to work, educational activities, shopping, business, 
services, recreation, and tourism. Each road segment has a value as 
destination derived from the location of shops, hospitals, schools, 
etc., in the city. This determines the relative attraction of each 
road segment for each activity. Figure 2 shows the relationships.

To add a time component to every trip, time charts from the 
same travel survey are used, resulting in spatiotemporal activity 
schedules (see Figure 3).

Example activity schedule Agent A:
Schedule: Working-Shopping-Home
Activities (hour // destination): 	
Going to work (8.27 // street X)
Going to the shop (16.33 // street Y)
Returning home (17.48 // outside city)

Parking Strategy 
In discrete-choice theory, each possible alternative of the finite 
choice set is assigned a utility. This utility is a numerical value 
that represents how much the decision maker values that alterna-
tive. The scale of this valuation is of no importance, as long as 
the same scale is used for all alternatives. After the calculation of 
the utilities, the person compares these against each other and 
chooses the one with the highest utility. Comparison of the utili-
ties implies that only differences in utilities matter not the actual 
values of the utilities.

To calculate the utilities, a function is constructed in terms of 
the observed properties of the choice set. For example, the price of 
a trip and the time the trip takes can be two of the properties in 
deciding which transport mode to use. However, in practice, there 
always will be unobserved factors and differences in the valuation 
of certain properties. This means that instead of the deterministic 
method explained previously, a statistical methodology needs to 
be used (Train 2003).

For the statistical method, an appropriate error distribution 
(expressing the unobserved factors and uncertainty) needs to be 
specified and added to the observed utilities. Based on the assump-
tions made on the error distribution and the form chosen for it, 
a number of different statistical models can be derived, allowing 
a number of different choice behaviors to be simulated. In SU-
STAPARK, a logit model is adopted. It is a simplified version of 
the discrete-choice structure developed by Hess and Polak (2004). 
The model considers four alternatives: free on-street parking, paid 
on-street parking, off-street parking in a parking lot, and off-street 
parking in a parking garage (both underground and aboveground 
parking structure). Illegal parking is not considered in the current 
version of the SUSTAPARK model (although the model of Hess 
and Polak does include it). Table 1 lists the numerical values of 
the coefficients. Note that the values depend on the trip purpose. 

The access time is the expected time to drive to the area 
around the destination, which is the area where the driver intends 
to park. Once the driver starts searching for parking, this value 
will remain constant.

The search time is the time a driver is willing to search for a 
parking place once he or she has arrived at the parking area. Here 
it is assumed that the search time only applies to on-street parking 
places (both free and paid). This means that after a certain time 
spent searching, all drivers will want to park off-street.

The egress time is the time a driver is willing to walk from the 
place he or she parked at to his or her actual destination. For the 
calculation of these times, the assumption is made that the driver 

Table 1. Table with the coefficients of the MNL model for the parking type choice (Hess and Polak 2004). The “Work” column gives the values 
of the coefficients if the trip has a “work” purpose; the “Other” column if the trip has some other purpose.

Variable Name Notation Coefficient Work Other
Access time (min.) At β1 -0.0513 -0.0283
Search time (min.) St β2 -0.0632 -0.0589
Egress time (min.) Et β3 -0.0925 -0.0924
Parking fee (€/h) Fee β4 -1.4104 -0.8267
Ion-street (paid) Ion-street (paid) -2.7628 -0.8126
Ioff-street (lot) Ioff-street (lot) 0.2830 -0.0913
Ioff-street(garage) Ioff-street (garage) 1.0614 -0.2140

Figure 3. Time chart showing a temporal difference for the trip motive 
“Shopping”
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has full knowledge of the city, including roads, parking places, 
and parking garages. As the search of an agent continues, his or 
her spatial location will change and so will this term.

The parking fee is the amount of money the driver would 
have to pay for the time he or she spends at the parking place. 
This can be zero if the parking place is provided free to the driver. 

Substantial differences can be seen between the coefficients 
for the “Work” purpose and for the “Other” purpose. In particular, 
commuters seem to have a strong dislike of paid on-street park-
ing and seem to prefer garages. Hess and Polak (2004) note that 
the signs of the dummies for parking lot and parking garage of 
the “Other” purpose are wrong and should, in fact, be positive.

For the calculation of the expected values, the assumption 
of full knowledge gives that the (expected) parking fee is the 
same as the true value. The access, search, and egress times are 
determined in iterative runs of the model until they converge to 
stable values. This means that for the search and egress times, the 
average is taken of all the actual times experienced by the agents in 
a (small) zone of the city. For the access times, the actual driving 
time is taken. Note that this represents traffic on a normal day, 
i.e., without accidents or other disturbances. All these times are 
given a small random error to represent uncertainty.

After the choice for an appropriate choice model, the main 
task is to specify and fit an appropriate model for the observed 
part of the utilities.

It should be stressed that these coefficients come from a study 
in a British city. The value of time that the coefficients implicitly 
contain is for this British city and might not be representative 
of the value of time in Leuven. Research also has shown that the 
value of time strongly depends on the purpose, which is only taken 
into account in a limited way. To differentiate among drivers, in 
parallel with the SUSTAPARK model development, the Centre de 
Recherche Urbain of the Université Libre de Bruxelles conducted 
a qualitative research on parking search strategy. It consisted of 
an experiment with 60 volunteers asked to simulate driving and 
parking for certain activities in town (shopping in a certain area, 
delivery at a specific address). A camera in the car filmed the 
driver and the street during the trip and the search for a parking 
place. Afterward, the driver answered questions. Data on the trip, 
traffic, parking availability, and decisions were georeferenced and 
timed. All these trips support the definition of rules for different 
search strategies that take economical, cognitive as situational 
factors into account. Different parking search behaviors were 
determined, based mainly on how well the driver knew the city (a 
resident, a frequent visitor, a tourist). Some described individual 
characteristics (impatience, hesitation) could not be linked to the 
travel survey data and have not been modeled.

The following choice behavior was implemented in SUS-
TAPARK. Initially, the following four search strategies are available:
•	 OnStreet: searching for on-street parking places near the 

destination, with a mostly random route choice.
•	 ResidentCard: very similar to OnStreet but represents 

residents with resident cards, which do not consider the price 
of a parking place and never switch to another search strategy.

•	 Private: residents who have their own parking garages and 
drive to them directly, without searching.

•	 Complex: drivers who go directly to the parking garages 
nearest to their destinations that still has free parking places 
(this operates under the assumption of complete knowledge).

During the parking search, drivers also can switch to two other 
strategies:
•	 ComplexOnStreet: originally these drivers followed the 

OnStreet strategy, but because the choice model indicated 
to switch to another type of parking, they change toward 
a Complex strategy (i.e., driving toward a parking garage). 
While driving toward the parking garage, the driver still 
checks the streets for free on-street parking places.

•	 FixedOnStreet: when there is no parking garage with free 
parking places available within a reasonable distance of the 
destination, a driver keeps on searching for an on-street 
parking place, despite having little success with it.

The paragraphs below discuss the formulas used in the 
implementation of the model. As a first step, the exponentiated 
utilities of all the alternatives need to be calculated. The free on-
street alternative is the reference level and therefore has no dummy.

U
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The choice probabilities (to be interpreted as the average 
chance that a specific alternative is chosen) then are given by
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By construction, the sum of the probabilities is one. The 
probabilities form the parameters of a multinomial distribution. 
Draws from this distribution are made with a random number 
generator (RNG), ranging from zero to one. The “choice” then 
is made by comparing the value of the RNG with the range of 
the intervals

[0 , P
 on-street (free)

 [ corresponds to a choice for free on-street parking.
[P

 on-street (free)
 , P

 on-street (free)
  + P
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 [ 

corresponds to a choice for paid on-street parking.
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  + P
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[ corresponds to a choice for off-street parking in a parking lot.
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 on-street (free)
  + P

 on-street (paid)
 + P
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 ,1] 

corresponds to a choice for off-street parking in a parking garage.

Because the driver in the model must make the choice for 
a parking type repeatedly, the value generated by the RNG is 
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stored so that it can be reused. If not, the choices of the drivers 
will continuously switch between the possible alternatives, which 
is not desirable.

A parking spot model is used by the drivers to decide whether 
they consider specific, empty on-street parking places suitable to 
park. Because no studies or empirical data were available for this 
problem, an ad-hoc model was constructed based on assumptions 
on which variables are relevant. Tests suggest that this model 
performs as expected.

The variables used  (see Table 2) are:
•	 Exit rate: the number of cars that exit from (on-street) 

parking places in the street per minute.
•	 Occupancy: the fraction of the parking places in the street 

that is occupied.
•	 Search time: the time the driver already has spent searching.
•	 Distance: the current distance from the destination 

(measured along the routes).

Table 2. Table with the coefficients of the parking spot model

Variable name Notation Coefficient Value
Intercept β0 5.88
Exit rate [cars/min.] Rate β1 -1.418
Occupancy [fraction] Occ β2 8.789
Search time [min.] St β3 2.197
Distance [meters] Dist β4 -0.05

The coefficients and the parameters are combined in the 
linear form

U
park

 = β
0
 + β

1
 . Rate + β

2
 . Occ + β

3
 . St + β

4
 . Dist

The probability of parking in a given (free) on-street parking 
spot then is given by

P
 park

 = 1 / (1+ exp(- U
park

))

Every 30 seconds, the discrete choice model reevaluates the 
current parameter values, and a change in parking strategy can oc-
cur. The stored RNG ensures consistency of the driver’s behavior.

Simulator
The loop of SUSTAPARK simulates a one-day period (24 hours). 
The temporal resolution is one second to ensure sufficient detail. 
The start time is set at 4 A.M., as the moment with the least 
traffic. The simulation consists of (1) an initialization of both 
the agent population and the network and (2) a simulation of 
the activities per agent (AgentSimulator) and of the traffic and 
parking situation (TrafficSimulator) (see Figure 4).

The initialization phase creates the model input: the road 
network, parking places in the NetworkCreator, and the activ-
ity schedules, home location, and initial parking places close to 
their homes in the AgentCreator. Residents are present in the city 
before the time loop starts. Agents from outside the city appear 
at entry gates of the network when their activity schedule makes 
them reach the city.

After initialization, the time loop starts. Each time step, the 

agent simulator updates all agents. Agents remain in the agent 
simulator even while their activity schedules make them leave 
the city. Subsequent activities can make them reenter the city. 
The model time is compared with every activity schedule and 
the agent’s state is set to “Driving” if an activity requires a trip.

The traffic simulator updates the road network. Every time 
step, intersection rules direct traffic at intersections, and roads 
are updated using a traffic cellular automaton (TCA) (Maerivoet 
and De Moor 2005). The TCA, used to model the traffic flow, 
is a discretized representation of a network consisting of several 
cells. SUSTAPARK is a so-called single-cell model, where each 
cell can hold only one vehicle at a time, in contrast to the more 
complex multicell models. As time advances, vehicles can move 
from one cell to another. The spatial resolution for the TCA is 
set initially at 7.5 m based on the space between cars. This spatial 
resolution together with the temporal resolution of one second 
determines the possible speed rates of the vehicles:

7.5 m/s=27 km/h

Possible speed rates for this resolution are multiples of 27: 
0 km/h, 27 km/h, 54 km/h, depending on the amount of cells a 
vehicle advances in one time step. Several factors limit the actual 
speed of each vehicle: the maximum speed of the vehicle and of 
the link where it is located, the parking search behavior (parking 
speed), and the preceding vehicle:

Actual speed= f(v
vehicle

,v
link

,v
parkingmode

,v
traffic

)

The driver’s parking search behavior can change the vehicle 
from “Driving” mode to “Parking Search” mode. From that mo-
ment, the network proposes possible empty parking spaces (which 
the vehicle can reach in one time step) to the driver. The driver 
decides whether to use a parking place based on the utility of these 
places. When parking search time is increasing, the utility of the 
parking places changes. Figure 5 is a schematic representation of 
the decision strategy.

Figure 4. Schematic representation of SUSTAPARK
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Output
The total situation of the network and agents is logged on every 
time step, resulting in output statistics: time series, parking oc-
cupancy per street, parking zone bottlenecks, (average) parking 
search time per agent. Joining these data to the spatial network 
provides map visualization.

Case Study for Leuven, 
Belgium
Leuven is a Belgian city with 97,291 inhabitants (as of January 
1,2011), an employment and shopping center, and a large popula-
tion of students. The study area is the historical inner-city center 
surrounded by a ring road. This ring road has a diameter of two 
kilometers with an internal street network of 88 kilometers (see 
Figure 6). The general parking policy is to keep cars outside the 
city as much as possible by providing parking lots outside the 
ring road and stimulating transport by bike and public transport. 
The mobility plan of the city makes through traffic in the historic 
center impossible for cars; the center is carfree, connected to 
the ring road with one-way roads creating loops. Parking places 
are mainly on-street and in private and public parking garages/
complexes. Residents can use on-street parking places without 
fee or time restriction by using resident parking carda. All others 
have a maximum of 15 minutes free parking or must pay in the 

commercial and business areas. In residential streets, parking is 
free yet limited to two hours maximum.

The GIS service of the city, G@lileo, provided detailed spatial 
data including the road network, parking complexes, and build-
ings. On-street parking places were available as the number of 
parking places per street segment. A local travel survey and local 
statistics provided data for agents and activity schedules (Zwerts 
et al. 2005).

Spatiotemporal Parking 
Supply and Demand

Supply of Parking 
As input data for on-street parking places and parking garages is 
available, only residential/private parking places have to be cal-
culated. Car ownership for the total province equals 396 vehicles 
per 1,000 inhabitants. This may be a small overestimation because 
car ownership in cities usually is lower than the average for the 
total province. Given the inhabitants per street, an estimation of 
the number of vehicles per street is:

vehicles 
per street

 =inhabitants 
per street

 * 0.396

Residents with resident parking cards may park on the street 
with their resident parking cards. Assuming that all the residents 
with a car and no resident parking card have access to private 
parking for their vehicle:

private parking places 
per street

 =vehicles 
per street 

 -  resident cards
 per street

The municipality seeks to promote parking outside the ring 
road and to discourage the use of cars in the city. The parking lots 
outside the ring road are used for different purposes than those in 
the city: as parking for the railway station, as places where students 
leave their cars for a week while staying in rooms on campus, as 

Figure 6. Street network of the inner city of Leuven, as implemented 
in the case study

Figure 5. Schematic representation of the parking-decision strategy. 
The driver parks if the utility of a parking place is greater than a 
threshold.
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park-and-ride for commuters to Brussels, etc. Therefore, these 
parking lots are not included in the model. Agents not having 
found a parking place in the city leave the system. In reality, 
these agents will park in those parking lots outside the ring road.

Demand for Parking 
The calculation of the demand for parking in space and time 
happens in three steps:
•	 Give all functions of buildings (restaurant, residential, 

office) an attraction factor per trip motive (recreation, work, 
shopping).

•	 Multiply the surface of the building with the attraction factor 
per trip motive.

•	 Summarize values per street and trip motive (see Figure 7).

This value is the relative attraction of a street for a particular 
trip motive and determines the chance a street is chosen as a trip 
destination (spatial component) when an activity schedule is 
followed (temporal component) (see Figure 8).

Scenarios
Three scenarios were run for this case study to verify the model: 
(a) a base scenario, (b) the addition of a new parking garage (Ka-
pucijnenvoer), and (c) the special event of the Christmas market 
(shown in Figure 9).

Figure 7. Determination of the relative attraction for every trip 
motive: the buildings with different functions in different colors, and 
the summary per street and trip motive

Figure 8. Relative attraction of streets for work (left), going home 
(middle), and shopping (detail, right) 

Figure 9. Location of the added parking garage Kapucijnenvoer 
(square), the Christmas market (triangle), and the other off-street 
garages (dots)
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Figure 10. The number of agents simultaneously active (driving and 
searching) in the model at specific times
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Base Scenario 
This scenario uses the original preprocessed data and rough esti-
mations. The number of agents was estimated as follows: In the 
regional travel survey calibrated with traffic counts on highways 
and regional counts, 25,000 car agents make a trip to and from 
the city of Leuven. This includes major employment centers and 
university campuses at the periphery of the city. Other indicative 
numbers were provided by the city: Calculations made for the 
traffic plan (extrapolations from traffic counts) assume 4,244 cars 
entering and 7,064 leaving the city during the morning peak. 
However, these also include employment centers (university 
hospital and campus, administrative center, bank and insurance 
quarters) located at the outside of the ring road.

Successive trials of the model starting from 25,000 agents 
resulted in an unrealistic congestion, because of the limited capac-
ity of the network. By gradually decreasing the number of agents 
to 14,000 agents, congestion was limited between 7:30 A.M. 
and 9:30 A.M. and around 5 P.M. This is a realistic situation in 
the city center. These agents generate a total of 16,186 parking 
actions. Note that this is a rough estimate.

The parking places include: Nine public parking garages of 
the city, with just more than 4,000 parking places, 3,000 private, 
and 6,352 on-street parking places. A calibration consisted of 
comparing the model results with counts of street and public park-
ing occupancy. Field experts of the city administration assessed 
the results based on their knowledge of the parking situation on 
normal weekdays.

New Parking Garage 
This scenario simulates the effect of the construction of a large 
parking garage (2,000 places) at the Kapucijnenvoer. As planned, 
some of its capacity (500 places) will be rented to residents and 
the remaining places are for paid off-street parking places, usable 
by residents and visitors alike. The maximum number of cars 

having private parking increases from 3,000 to 3,500 compared 
to the base scenario, while the agent set and network remain 
the same. The number of public parking places inside a parking 
garage increases by 1,500.

Christmas Market 
In this scenario, the impact of the Christmas market in the city 
of Leuven is simulated. The number of recreational agents of the 
base scenario increases by 1,000 to represent the extra attraction of 
the market. The Christmas market activities start in the evening 
and continue during the market hours. On the road network, 
the area around the Christmas market has a higher recreational 
attraction. The amount of parking places remains unchanged in 
comparison with the base scenario.

Results

Base Scenario
The total number of agents at any given time in the model (see 
Figure 10) consists of a fraction of those driving toward their 
destinations and others looking for parking places. The shape 
of the curve corresponds with rush hours: a sharp peak in the 
morning and a broader and lower, albeit broader, peak in the 
evening. The peak around noon is caused by agents going out or 
going back home for lunch. During working hours, almost half 
of the drivers are looking for parking places. 

The ring road of Leuven serves as connection structure, both 
in reality and in the model. Cars only using the ring road in that 
way, without participating in parking search in the city center, 
are not included in this graph.

The average parking distance (see Figure 11) measured along 
the network (average of the whole day and all the cars having 
this street segment as their destinations) is an indication of the 
parking pressure. This is the distance between the place where the 

Figure 11. Average distance along the network between the 
destination (street) and the parking

Figure 12. Average parking search time per street for all agents 
throughout the day
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Figure 13. Evolution throughout the day of parking occupation: public (paying) parking garages (top), private off-street parking places (bottom 
left), and on-street parking (bottom right)

Figure 14. Number of trips compared with the distance between 
destination and parking

car is parked and the center of the destination road segment. The 
average length of the road segment in the study area is 82 meters, 
so the parking distance is on average +/- 41 meters. Around the 
traffic-free center, which is also the area with the highest overall 
attraction, the average distance between the parked car and the 
destination is up to one kilometer. Away from this area, agents 
usually can park near their destinations. This shows that parking 
in this city is a local problem. 

The average time spent by agents searching for parking 
places (average of all the driving agents and all times of the day) 
indicates again the parking pressure around the city center (shown 
in Figure 12). In the eastern part of the city, the Bondgenotenlaan 
also stands out. This is a shopping street with no on-street parking 
places. Drivers, therefore, search for parking places in adjacent 
streets, resulting in high parking search times and serious pressure 
on the available parking places.

The nine public parking garages are closed for the night. They 
fill up during the day, after the morning rush hour. In the model, 
drivers first saturate the available on-street parking places. These 
are either free with a two-hour time limit, thus more attractive 
for agents with activities of less than two hours, or with a charge, 
but less expensive than the parking garages. The peak use of the 
public parking garages occurs in the afternoon, mainly because 
of shoppers (see Figure 13).

The occupation of parking places is the same at the start (4 
A.M.) and at the end of the model (4 A.M. the next day), because, 
it is assumed, every agent starts and ends the activity schedule 
at home. Public (paying) parking garages and on-street parking 
places start to fill up as commuters come to the city. The afternoon 
peak is also the same for both. In the evening, there is another 
peak as people come to the city for recreational purposes. The 
private off-street parking occupation follows an opposite curve. 

Drivers who go to private parking places or who have resident 
cards do not change strategies. Table 3 indicates that the large 
majority of the remaining drivers have initial strategies to look 
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for on-street parking places. For more than 20 percent of their 
trips, they are unable to find on-street parking places within a 
reasonable amount of time and switch to strategies aimed at 
paying parking garages. A few drivers who initially intended 
to park at parking garages fail to find parking places there and 
park on-street. In Leuven, driving from one parking garage to 
another usually requires considerable detours or even returning 
to the ring road to enter the city from another “gate” or entry 
point. The agents reflect the driver behavior of searching on-street 
alternatives in the parking search areas near the destinations. It 
also is interesting to note that the number of drivers who wind 
up in parking garages after first looking on-street for parking 
places is higher than the number of drivers who go directly to 
parking garages. This is indicative of the reluctance of drivers to 
go for parking garages if they have on-street alternatives, which 
is included in the choice model.

When the distance between the eventual parking place and 
the destination are studied (shown in Figure 14), it is clear that 
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two-thirds of the drivers find parking places within reasonable 
distances of their destinations (less than 300 meters). In fact, one-
third of the drivers manage to park within 100 meters of their 
destinations. In contrast, the fraction of drivers who park at a 
much farther distance than 300 meters is very large. This indicates 
that after searching for a while near their destinations, drivers 
decide to go for another alternative where they know they can 
park, instead of continuing the search nearby their destinations.

A graph of the average search times for a parking place, 
stratified by distance between the eventual parking place and 
the destination, Figure 15 shows that the drivers who park close 
to their destinations spend substantially less time searching for 
parking places than drivers who find parking places further away. 
The agents who manage to park within short distances include a 
large share of drivers who park in private parking garages or have 
residence permits. Drivers who park further away are frequently 
drivers who first searched for on-street parking places and then 
switched to parking garages, which are on average further away 
from their destinations.

To validate the results from the model, parking counts 
were conducted on 44 roads, during four days (June 24, 2008, 
to June 27, 2008), between 7 A.M. and 9 P.M. The results are 
summarized in Table 4.

The number of cars parked on the street generally is overesti-
mated in the model (68 percent).  This is, at least in part, because 
the real capacity of on-street parking spaces for cars always was 
lower in reality than the theory: construction work on houses, 
illegal parking of trailers using several parking spots, moving vans, 
motorbikes, etc. Also, the space was far from optimally used by 
the parked cars. Other reasons could be that the choice model 
needs further refinement. 

Christmas Market
 The Christmas market leads to a large additional evening demand 
in the relatively small area where it is organized. This results in an 
increased parking garage occupation (see Figure 16). The nearest 
garage is right under the Christmas market (parking Ladeuze). The 
pressure on the parking places in this area generates longer parking 
search times (shown in Figure 17). There is only a small increase 
of the distance between parking and destination, explained by 
the reluctance of visitors to exceed a maximum walking distance 
to the destination. When search time increases, choosing for an 
off-street parking garage is also an option for visitors who did not 
originally have that intention. The location of parking Ladeuze 
explains the lack of increase in parking distance. This result is a 
direct consequence of the search behavior implemented in the 
model. In December of 2012, the Christmas market generated 
daily gridlocks, because the parking Ladeuze was full and the exit 
was blocked by queuing cars. In this case, perfect driving behavior 
assumed in the model did not correspond with the obstruction 
of intersections and parking exits in reality. 

New Parking Garage 
As is inherent in creating 500 extra “private” places in the model 
of the city, a shift occurs in resident parking (as trip motive equals 
“going home”) from on-street parking toward private parking. The 
new parking garage also provides 1,500 extra places for paid off-
street parking. From the comparison between Figures 13 and 18, 
it is clear that although the new parking garage Kapucijnenvoer 

Table 3. Comparison between the initial and the final parking strategy 
for all trips

Figure 15. Average search time for a parking place compared with the 
distance between destination and parking
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Table 4. Comparison between the counted and the modeled parked 
cars

Hours Number of Parked 
Cars: Counted

Number of Parked 
Cars: Model

%

7–8 1,820 2,606 70

8–9 2,601 3,284 79

9–10 2,069 3,467 60

10–11 2,842 3,595 79

11–12 2,359 3,640 65

12–13 3,402 3,679 92

13-14 3051 3735 82

14-15 2469 3745 66

15-16 1944 3648 53

16-17 2276 3362 68

17-18 1902 3161 60

18-19 2145 3324 65

19-20 1820 3494 52
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is used by many drivers, the overall amount of off-street parking 
changes little. What does happen is a large shift toward the new 
parking garage from the other parking garages. This shift causes 
a substantial reduction in the average distance drivers park from 
their destinations (in Figure 19) but not in the search times. This 
means that the main effect of the new parking garage is that some 
parkers can park closer to their destinations if they decide to park 
off-street. However, this is only a substitution and does not attract 
drivers (or only very little) who currently park on-street.

This effect is partly because of the way the model works. 
However, the result does make sense. Without measures to change 
the current balance between on-street and off-street parking, it 
does not seem useful to add a large additional capacity for off-
street parking places. Merely adding additional off-street park-
ing places (under the assumption of equal demand for parking 
places and the same price structure as other garages) is not likely 
to increase the demand for off-street parking places. Where the 
new parking is more conveniently located for some people, it may 
attract some more drivers who currently park on-street. However, 

the distance to the center is likely to motivate drivers to look for 
on-street alternatives closer to their trip destinations.

One other—currently not modeled—effect might be of 
importance: Adding such a large amount of parking places may 
encourage car use in the inner city, through a modal shift from 
other transport modes or through additional trip generation.

Comparison
Figure 20 shows the comparison of the three scenarios for the 
number of searching agents during the day. Around 8 P.M., a big 
difference can be seen for the Christmas market scenario. The 
number of agents searching for parking places peeks. The reason 
for this is the increase of the agents that all move to the same area 
around the same time. This increase already starts from around 
2 P.M. because the motive of the agents already is adapted from 
that moment.

Comparing the total parking occupation for the three 
scenarios (shown in Figure 21) reveals interesting effects. For 
the public parking garages, the effect of the Christmas market 

Figure 19. Average distance along the network between the 
destination (street) and the parking for the Kapucijnenvoer scenario
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Figure 16. Evolution throughout the day of the total occupation of 
the parking garages in the Christmas market scenario

Figure 17. Average parking search time per street for the Christmas 
market scenario
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Figure 18. Evolution throughout the day of the total occupation of 
the parking garages for the Kapucijnenvoer scenario
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is relatively high. From 2 P.M., the total occupation is higher 
than in the other scenarios, with a peek around 8 A.M. The 
new Kapucijnenvoer parking does not increase the total public 
parking garage occupation. On average, a fixed number of agents 
used parking garages for both scenarios, only a shift between the 
parking garages happened to the closest parking garage, resulting 
in smaller distances between their parking places and the trip 
destinations for the area around the new parking garage.

The comparison for on-street and private parking places is 
quite similar: an increase of the on-street parking places for the 
Christmas market scenario from 2 P.M.

For the Kapucijnenvoer scenario, the 500 extra private park-
ing places available for the inhabitants result in more available 
on-street parking places. However, the difference is not 500 dur-
ing the whole day. When pressure on the parking places increases 
around 12 P.M., these 500 “extra” on-street places are used more.

Stochastic Fluctuation
Because SUSTAPARK is a model based on stochastic draws with 
a random number generator, we expect fluctuations in the results. 
How severe are these fluctuations? For example, how large is the 
difference between consecutive runs of the model and how com-
parable are the results for the same scenarios? To try to answer 
this question, we ran SUSTAPARK 15 times on the same baseline 
scenario. During each run, we collected all the vehicles’ search 
times on all the roads for each block of five minutes during the 
day. In total, this gave some 16,000 data points for each run, with 
a grand total of some 80,000 data points for the entire exercise.

Consider the results of one run, we can estimate the per-
centiles from the distribution of the vehicles’ search times (the 
50 percentile corresponds to the median). With each new model 
run, we combine its results with those of the previous set of runs. 
This systematically increases the population size, giving a better 
estimation of the true distribution of vehicles’ search times. The 
results when calculating the percentiles after each set of runs 
indicate that it seemingly does not matter how many runs of 
SUSTAPARK are executed. Each time, the percentiles lie closely 
to each other (see Figure 22). 

Only for the very high percentiles (i.e., 99 and above) is there 
is some variation in the results. This means that for the extreme 
values of the search times (i.e., exceptions such as small streets 
where only one car is searching for a long time), increasing the 
number of model runs may stabilize the result. All in all, the 
previously sketched experiment seems to indicate that each run of 
SUSTAPARK is quite stable in itself, implying that no averaging 
of consecutive runs is necessary. 

Figure 20. Searching agents throughout the day for the three scenarios 

Figure 21. The evolution of the total occupation of parking places throughout the day for the three scenarios: parking garages (left), on-street 
(right,) and private parking places (bottom)
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Discussion and Conclusions
This paper describes the general concepts used in the development 
of the SUSTAPARK model to simulate on a high-detail level 
the parking situation in an urban environment. The application 
of the model for the case study of Leuven demonstrates that an 
agent-based approach can be used to simulate 24-hour traffic 
and parking in an entire city. In fact, the complexity of modeling 
parking in a city decreases by dividing the problem into its basic 
components, resulting in simple rules that agents have to follow. 

By using an agent-based approach, the situation of every 
individual is simulated during the execution of the model result-
ing in several parking situation indicators: maximum and average 
parking occupation, walking distances, congestion zones, etc. 
Different scenarios can be run by adapting the number of agents, 
their behavior, the traffic, or the infrastructure of the city.

In the case of Leuven, the base scenario shows that there is an 
overcapacity of parking places, but that there are local problems 
around the traffic-free center. Also, many cars are parked in the 
streets while there still is unused capacity in the public parking 
garages. The city used these figures to further restrict on-street 
parking. Another finding is that the city distributes 1,682 resident 
cards, using 26 percent of the on-street parking places, while the 
parking garages are empty at night and not full during the day, 
except for the parking near the station and the parking Ladeuze 
when there is an event such as the Christmas market at that lo-
cation. The model results thus indicate that more cars could be 
taken off the streets by offering opportunities for residents in the 
parking garages, instead of giving them facilities to use the streets 
as private parking places.

The model has a very high level of detail and enables 
the modeling of interactions at a very small scale. The model 
structure allows for further extension and improvements with 
additional features. The keys to ensure realistic output are a 
good understanding of the parking behavior and a representa-
tive agent population with activity schedules that approximate 
real life (at the moment we work with a rough estimate of the 
parking demand). This is obtained from travel surveys and local 
GIS data on urban land use. The increasing availability of both 

is reflected in, i.e., the indicators and the number of cities in the 
European Urban Audit database (EC 2011). Another aspect is to 
understand the local driving and parking behavior. In Flanders, 
Belgium, drivers can experience parking as a problem from the 
moment they have to search for suitable places (Zwerts and Nuyts 
2005). In SUSTAPARK, these driver characteristics are included 
in the agent simulator.

The current model and the methodology adopted do have 
limitations at this point. The estimation of the total demand for 
parking in the test case is a very rough approach. This could be 
improved for cities having traffic counts. Another shortcoming 
is that driving and parking are modeled as being perfect. This is 
not the case in reality. The parking counts in the base scenario 
showed a suboptimal use of on-street parking space, and the 
Christmas market generated gridlocks because of the obstruction 
of intersections and parking, not included in the model.

While the adopted agent methodology enables a high level 
of detail in the model, it comes with a price of considerable data 
requirements. A significant amount of time was needed to process 
the data and prepare them for the model input. Furthermore, the 
model also has city-specific parameters and requires fine-tuning 
to local circumstances before use in another urban context. 

A further extension could include a mode choice model 
to embed the effects of price and availability of parking in an 
overall urban mobility system. It is clear that much more re-
search is needed in the field of parking behavior. We hope the 
SUSTAPARK project will contribute to the scientific body of 
knowledge on parking. The tool can be used to simulate effects 
of planned parking measures in a city.

Acknowledgments

This project is funded by the Federal Science Policy in the Science 
for a Sustainable Development Programme. The authors would 
like to thank the city of Leuven for the provided data.

About the Authors

Thérèse Steenberghen 
SADL, K.U.Leuven
Celestijnenlaan 200E
BE3001 Heverlee
Belgium
therese.steenberghen@sadl.kuleuven.be
http://www.sadl.kuleuven.be

Karel Dieussaert
Geosolutions
Veldkant 33B
BE2550 Kontich

Figure 22. Stochastic fluctuation of 15 model runs



76 URISA Journal • Vol. 24, No. 1 • 2012

Belgium
karel.dieussaert@geosolutions.be
http://www.geosolutions.be

Sven Maerivoet
Transport & Mobility Leuven
Diestsesteenweg 57
BE3010 Kessel-Lo
Belgium
sven@tmleuven.be
http://www.tmleuven.be

Karel Spitaels 
Transport & Mobility Leuven
Diestsesteenweg 57
BE3010 Kessel-Lo
Belgium
karel@tmleuven.be
http://www.tmleuven.be

References

Anderson, S., and A. de Palma. 2007. Parking in the city. Papers 
in Regional Science 86(4): 621-32.

Arentze, T., and H. Timmermans. 2005. Information gain, nov-
elty seeking and travel: A model of dynamic activity-travel 
behavior under conditions of uncertainty. Transportation 
Research Part A 39: 125-45.

Axhausen, K. W., and J. W. Polak. 1991. Choice op parking—
stated preference approach. Transportation 18(1): 59-81. 

Benenson, I. 1998. Multi-agent simulations of residential dynam-
ics in the city. Computers, Environment and Urban Systems 
22(1): 25-42.

Benenson, I. 1999. Modeling population dynamics in the city: 
From a regional to a multi-agent approach. Discrete Dynam-
ics in Nature and Society 3(2-3): 149-70.

Benenson, I., S. Aronovich, and S. Noam. 2005. Let’s talk objects: 
Generic methodology for urban high-resolution simulation. 
Computers, Environment and Urban Systems 29(4): 425-53.

Benenson, I., K. Martens, and S. Birfir. 2008. PARKAGENT: 
An agent-based model of parking in the city. Computers, 
Environments and Urban Systems 32: 431-39.

Crooks, A., C. Castle, and M. Batty. 2008. Key challenges in 
agent-based modeling for geo-spatial simulation. Computers, 
Environments and Urban Systems 32(6): 417-30.

European Commission. Directorate-General regional policy. The 
urban audit. Http://www.urbanaudit.org, accessed October 
30, 2011.

Hess, S., and J. Polak. 2004. Mixed logit estimation of parking 
type choice. Presented at the 83rd Annual Meeting of the 
Transportation Research Board, Washington, DC.

Hess, S., and J. Polak. 2005. Mixed logit estimation of parking 
type choice. Imperial College. London, working paper.

Laurier, E. 2005. Searching for a parking space. Intellectica 
2-3(41-42): 101-16.

Litman, T. 2008. Parking management: Strategies, evaluation and 
planning. Victoria Transport Policy Institute.

Maerivoet, S., and B. De Moor. 2005. Cellular automata models 
of road traffic. Physics Reports 419(1): 1-64.

Marsden, G. 2006. The evidence base for parking policies—a re-
view. Transport Policy: Special Issue on Parking 13(6): 447-57.

Martens, K., and I. Benenson. 2008. Evaluating urban parking 
policies with agent-based model of driver parking behavior. 
Transportation Research Record 2046: 37-44.

Shiftan, Y. 2008. The use of activity-based modeling to analyze 
the effect of land-use policies on travel behavior. Annals of 
Regional Science 42(1): 79-97.

Shoup, D. 2006. Cruising for parking. Transport Policy 13: 
479-86.

Teknomo, K., and K. Hokao. 1997. Parking behavior in central 
business district—a case study of Surabaya, Indonesia, 
Eastern Asia. Society for Transportation Studies Journal 
2(2): 551-70.

Thompson, R., and A. Richardson. 1998. A parking search model. 
Transportation Research A 32(3): 159-70.

Torrens, P. M., and I. Benenson. 2005. Geographic automata 
systems. International Journal of Geographical Information 
Science 19(4): 385-412.

Train, K. E. 2003. Discrete choice methods with simulation. 
Cambridge University Press. Available online at http://elsa.
berkeley.edu/books/choice2.html.

Vlaamse Overheid. 2008. Vademecum duurzaam parkeerbeleid, 
Departement Mobiliteit en Openbare Werken Afdeling 
Beleid Mobiliteit en Verkeersveiligheid.

Zwerts, E., and E. Nuyts. 2005. Ministerie van de Vlaamse 
Gemeenschap. Onderzoek verplaatsingsgedrag Vlaanderen; 
Rapport OVG stadsgewesten, Vlaams-Brabant (2000-2001).



URISA Journal • Zellner, Lyons, Hoch, Weizeorick, Kunda, Milz 77

Introduction
Planning for complex human-environmental systems requires 
that decision makers are able to make sense of system complexity. 
A system is complex when its parts (e.g., residents, developers, 
farmers, biophysical features) interact selectively with each other 
through direct actions and through reactive feedbacks, creating 
dynamic and spatial interdependence (Holland 1995, Miller 
and Page 2007). Because present interactions change the way in 
which interactions may occur in the future, uncertainty is inher-
ent in complex systems (Axelrod and Cohen 1999). Planning 
can effectively prepare us to adapt to a range of plausible futures 
by understanding and building on this complexity, allowing it 
to inform a community’s intentions about what combination 
of policy goals to adopt and use. The predominant planning 
approach to environmental problems involves forming diverse 
stakeholder committees, focusing on fair representation of dif-
ferent viewpoints—a critical aspect of any democratic process. 
Less attention, however, is placed on understanding the various 
layers of complexity they face. The first layer is the complexity 
of the system they are planning for. Individual use of a shared 
resource interacts with use by others, making it hard to trace 
causal impacts through the web of interactions, especially when 
the shared resource also is complex and responds in uncertain 
ways to human-induced stresses (e.g., groundwater). Cumula-
tive effects can appear mysterious. The second layer is the social 
complexity generated by members’ own diversity of backgrounds, 
beliefs, interests, perceptions, and data, which informs the way 
that they interact with each other for collective decision mak-
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ing. Self-interest and partial understanding of the system they 
are planning for often leads stakeholders to focus exclusively on 
individual impacts, exaggerating their salience, and overlooking 
critical interactions. Policy makers may focus prevention or miti-
gation efforts on a single type of user or use (e.g., farmers) that 
does not remedy systemic depletion pressure from other sources 
(e.g., residential subdivision growth). 

Anticipating these difficulties, stakeholders may use a variety 
of visualization tools to estimate and display potential future ef-
fects of different plans. Popular and easy-to-use tools often mislead 
stakeholders when applied to complex problems. Less familiar and 
more demanding simulation tools may better estimate future in-
teraction effects of different plan-related policies and expectations, 
but they require hiring expert modelers to collect high-quality data 
to inform the models, build the models, conduct the simulations, 
and interpret their results. Outside expertise relies on stakeholders’ 
trust, but because stakeholders do not understand the simulation 
of future effects in their own terms, their confidence flows from 
professional reputation, not understanding. Off-loading plan 
simulation onto outside experts does not allow for stakeholder 
examination of policy goals and alternative plans in light of their 
implications for the future.

Planning theorists and analysts have made the case for col-
laborative plan making when confronting complex problems, the 
argument being that collaboratives can better learn to conceive, 
assess, and choose among options for the future (Innes and Booher 
2010). Most studies focus on the design of plan-making institu-
tions and stakeholder involvement to reconcile the complexity 
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of social and political goals (Innes et al. 2007, Susskind and 
Cruickshank 1987). Others study the methods and tools used 
to improve the quality of collaboration (Forester 1999, 2010). 
In this article, we add to this area of inquiry by studying how 
agent-based modeling can contribute as a participatory model-
ing tool for collaborative planning, examining how it affects the 
learning processes underpinning the ability to explore complex 
environmental problems.

Participatory Modeling and Collaborative 
Planning 
Participatory model building involves not only expert modelers 
but also stakeholders and public officials in conceptualizing and 
building models, interpreting their results, and using them to sup-
port decision making. When used as a support for collaborative 
planning, participatory modeling has the theoretical advantages of 
cultivating a shared understanding and better framing of complex 
problems and informing problem-solving judgments, by inviting 
participants to explore potential outcomes and learn how the 
assumptions and beliefs built into the model result in the simu-
lated outcomes. This collective modeling improves the chances 
that the plans proposed will be supported and implemented, as 
diverse voices are heard and beliefs are adjusted to a common 
understanding of the shared vulnerability to the deterioration of 
common environmental resources (Tidwell and van den Brink 
2008, Zellner 2008). While valuable in theory, in practice, model 
literacy and use typically remains the domain of the expert mod-
elers who regularly use computer simulations in their work to 
better understand the systemic processes and trade-offs involved 
in human-natural systems. In their zeal to create “accurate” rep-
resentations of complex human-environmental change, experts 
tend to generate tools that only they can use. These tools are not 
designed for use by professional planners and civic stakeholders. 
Modeling experts typically present their simulations to planning 
committees late in the planning process to show the impacts of 
competing, already-developed scenarios, but the audience rarely 
grasps how they were generated, constituting “black boxes” that 
are not open to public scrutiny (Zellner 2008). Some of the 
obstacles to regularly and fruitfully using models for collabora-
tive resource management and environmental planning include: 
•	 The requirement of extensive professional training to 

conceptualize, build, and use models  (Joerin and Nembrini 
2005, McIntosh et al. 2007, Tidwell and van den Brink 
2008);

•	 The difficulty to adapt models to specific contexts and to 
generalize across contexts because of the expensive expertise 
and data required (Joerin and Nembrini 2005, Borowski and 
Hare 2007, Tidwell and van den Brink 2008, van Herzele 
and van Woerkun 2008); 

•	 Computer applications that are unfriendly to nonexpert 
modelers, preventing the involvement of stakeholders and 
managers in model construction and interpretation (Borowski 
and Hare 2007, McIntosh et al. 2007, Zellner 2008);

•	 The tension between inherent limitations of models as 
exploratory tools and the requirement of accurate predictions 
imposed by political processes (Joerin and Nembrini 2005, 
Borowski and Hare 2007, Zellner 2008); and

•	 The power imbalances that allow special-interest groups 
to exert too much influence on the process, while 
underrepresented groups remain marginal (Tidwell and van 
den Brink 2008).

As a consequence of these barriers, modeling efforts often fail 
to lead to the learning necessary for changes in policy and behavior 
to occur because citizens find it difficult to interact with the model 
and interpret its outputs (Zellner 2008). Moreover, the outcomes 
predicted by “black box” simulation tools are strongly questioned 
by participants because the assumptions and interactions within 
the simulation are not revealed, especially when the results do not 
match the participants’ beliefs and values (Dasgupta et al. 2010). 
As a result, participants rarely incorporate their own values and 
specialized knowledge into the spatial and dynamic models, or 
derive useful insights from the simulations to inform discussions 
that advance policy changes in the direction of socioecological 
improvement. Such collaborative processes eventually may lead 
to consensus but not necessarily to a better understanding of 
how the problem being addressed is complex and to policy that 
adapts policy goals to this new understanding, i.e., to learning. 
Helping stakeholders learn about complex environmental prob-
lems requires new skills and tools to support reasoning about 
complexity. Such reasoning ability would enable stakeholders 
to more readily recognize different forms of knowledge, scales, 
and interactions represented in their collective endeavor, and to 
expand their understanding of the problem from a propositional 
view of how individual pairs of variables interact to a view that 
acknowledges the networked structure of influences on variables 
of interest. Stakeholders thus would be better equipped to ex-
amine the relative influence of different variables both in terms 
of effect and relative manipulability, allowing communities to 
avoid making planning decisions that might seem to lead to so-
cioecological improvement but to comparatively little net effect. 
The ability to reason about complexity would lead, therefore, to 
the cocreation of both knowledge and beliefs about appropriate 
steps toward resource sustainability, beyond the conditions for 
effective participation that are typically the focus of planning 
literature (Steyaert et al. 2007, Zellner 2008). 

Our motivation is to find ways to enhance collaborative 
environmental planning processes with the use of modeling tools 
that can support learning about the complexity of the socioeco-
logical system and thus promote innovation of policy. We use a 
different kind of approach, which follows from an epistemology 
that privileges creative exploration over establishing proof. Rather 
than using models to accurately predict future impacts of deci-
sions, we use models as prosthetic thinking devices to support 
the rapid creation and exploration of scenarios that can lay bare 
previously hidden interaction effects. Prediction works well for 
linear systems, where models can be used to perform calculations 
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to estimate a future state of the system, and where the only limita-
tion is data accuracy and availability. With complexity, attempting 
such projections is a futile effort. Even with accurate data readily 
available, the interdependence of system parts greatly reduces our 
ability to predict future states, as a variety of plausible futures 
may emerge from identical processes. In this case, exploring the 
range of possibilities and how they can emerge from underlying 
processes is more supportive of planning for complexity and un-
certainty than trying to match history and projecting it into the 
future in a linear manner (Brown et al. 2005). This exploration ap-
proach also aligns well with the inquiry-driven learning processes 
that often are at play in nonclassroom learning settings (Bell et al. 
2009). With an exploratory approach, disparate stakeholders may 
learn how reliance on a shared aquifer, for example, makes each 
vulnerable to the level and location of water use by others and how 
these interactions vary depending on environmental conditions 
and water-use rules and behavior. Their assumptions and beliefs 
thus are tested as they explore the interconnections among water 
users with the natural resource illustrated by the model. With this 
understanding, they may use the model to inform decisions about 
water-management strategies and programs, and to brainstorm 
innovative strategies not previously conceived. With interactive, 
software-based models, it becomes harder to ignore the fact that 
models are a part of the planning-activity system, playing a role 
in mediating the communication of knowledge between partici-
pants and in shaping the unfurling of the collaborative process 
(Kaptelinin 1996). 

Designing a Participatory Modeling and 
Learning Process for Environmental Planning
Our aim was to produce a collaborative planning experience 
that would (1) help nonexperts better understand complex 
human-natural interactions and to use that knowledge to (2) 
engage in more truly collaborative and creative planning activi-
ties. Our methodology is informed by Design-Based Research 
(DBR) (Cobb et al. 2003), which is especially useful when at-
tempting to create new educational interventions for real-world 
settings. Following are some of the design guidelines, drawing 
from recommendations in the literature on learning sciences, 
social learning and collaborative planning, complex systems, and 
decision-support systems:
(1) Design guidelines for how to aid nonexperts understand 

complex human-natural systems: 
•	 Preserve a systems outlook throughout: Nonexpert 

understanding of complexity tends to focus on visible 
structures and assumptions of central control and 
single causality, rather than on an in-depth awareness 
of how system components interact at different 
temporal or spatial scales to give rise to the system’s 
functions. Consequently, novices’ common sense is 
overly simplistic and does not apply well to natural 
systems where time lags and invisible feedback generates 
counterintuitive effects (Hmelo et al. 2000, Hmelo-

Silver et al. 2007a). Research shows that introduction 
to even highly simplified systemic models sensitizes 
one to possible sources of complexity and allows one 
to perceive those sources even in new problem domains 
(Goldstone and Sakamoto 2003). Understanding 
complexity allows participants to reuse that knowledge 
and transfer it to other situations (Hmelo et al. 2000, 
Hmelo-Silver et al., 2007a). Therefore, our goal here 
is not to help stakeholders memorize the structure of 
one particular web of influences, but to sensitize them 
so that when they face a planning problem they resist 
causal reductionism and are likely to adopt a perspective 
that acknowledges that there is likely to be a web of 
influences that needs to be considered.

•	 Make invisible interaction effects visible: To facilitate 
understanding of behavior and function in a complex 
system (see previous point), learning activities need to 
provide participants with opportunities to experience 
these systems through the use of computational 
tools and simulations that highlight the relevant 
interactions (Hmelo et al. 2000, Jacobson and Wilensky 
2006, Hmelo-Silver et al. 2007a). Additionally, 
different perspectives, beliefs, and assumptions need 
to be made explicit among stakeholders, for which the 
computational tools need to cross boundaries between 
communities of knowledge and practice to represent 
them in explicit form (Maurel et al. 2007). Tools can 
greatly shape how people reason about problems (Papert 
1980) and can change how people reason about complex 
systems (Wilensky and Resnick 1999) in part by making 
previously unconsidered elements accessible. 

•	 Enable hands-on model building and exploration: 
Research shows that hands-on interaction, scaffolding, 
and iteration that allows for alternating analysis and 
model building with reflection and constructive 
discussion builds both the cognitive and the social skills 
of a group (Hmelo et al. 2000, Jacobson and Wilensky 
2006, Hmelo-Silver et al. 2007b, Maurel et al. 2007, 
van Herzele and van Woerkun 2008). Learners need to 
be actively engaged in design and modeling activities 
to learn to reason about complex systems, and in 
exploration and critique of successive model versions 
to move from appearance-based to functional models 
(Wilensky and Resnick 1999, Hmelo et al. 2000, 
Klopfer et al. 2005, Hmelo-Silver and Barrows 2006, 
Papaevripidou et al. 2007). It takes time for these skills 
to develop and be incorporated into the practical aspects 
of decision making for a specific place (Hmelo et al. 
2000, Jacobson and Wilensky 2006). 

 (2) Design guidelines for how to engage groups in more truly 
collaborative and creative planning activities:
•	 Include diverse participants:  Diversity of viewpoints 

and experiences improves the scope and range of ideas 
for understanding and solving complex environmental 
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problems (Maurel et al. 2007, Page 2007), an ideal of 
most collaborative planning activities.

•	 Coconstruct a model to follow the group’s line of inquiry: 
The elements stakeholders may want to include in a 
model, and the kinds of questions they will wish to 
investigate using the model, depends significantly on 
the idiosyncrasies of the diverse group of participants. 
To maintain motivation when engaged in inquiry 
learning, learners must be allowed to pursue problems 
of interest to them (Blumenfeld et al. 2006). For this 
reason, it is important to allow the group’s interests to 
direct which elements to add and which outcomes of 
interest to attend to.

•	 Foster small group collaboration: Learning to collaborate 
is fundamental for complex problem solving, as an 
individual skill to become informed citizens, and as a 
collective form of computation (Barron 2000, 2003; 
Hmelo-Silver et al. 2007b, p. 2007), and to foster a sense 
of responsibility for both individual and group work 
outcomes (Johnson and Johnson 1989). Small group 
size is important for effective dialogue (Borowski and 
Hare 2007), as is alternating individual and group work 
to allow for both individual and collective viewpoints 
to be developed (Hertz-Lazarowitz 1992). 

•	 Alternating between abstract and detailed models: The 
use of detailed geographic information is perceived as 
more realistic and accurate. Such detail may overwhelm 
novices especially if they are not strong learners and put 
them at risk of misinterpreting simulations, preventing 
effective exploration and understanding of the behavior 
and function of a system (Hmelo et al. 2000, Goldstone 
and Sakamoto 2003). Alternating between stylized, 
abstract models and detailed representations may allow 
a better transfer of knowledge about basic principles 
of complex systems to other realms (Goldstone and 
Sakamoto 2003). Given that collaborative processes may 
engage different types of learners, it therefore becomes 
important to provide a suite of modeling tools that 
alternates between abstract and detailed representations.

Based on these recommendations, we designed a four-session 
developmental and participatory modeling approach with a group 
of diverse planning stakeholders who had helped develop a water-
resource management plan for a suburban county near Chicago, 
Illinois. The goal of the activity was to give the stakeholders the 
opportunity to recognize and assess the impacts associated with 
the implementation of the elements of their proposed plan. The 
goal of our activity design was to enhance stakeholder delib-
erations and collective planning judgments by promoting joint 
learning of the complexity of their water problem through the use 
of a series of computational models that integrated land-use and 
water-use decisions with aquifer dynamics. We chose agent-based 
modeling (ABM) to represent the complex socioecological system 
because their rule-based structure and explicit representation of 

interactions among relevant actors and environmental processes 
may improve novice understanding of how complex systems work, 
and thus facilitate involvement in setting values and modifying 
rules, inspiring trust in the modeling process (Hmelo-Silver et 
al. 2007, Zellner 2008). 

Assessing Learning in Planning
The effectiveness of collaborative planning processes to promote 
learning and better policy—with or without modeling—are 
rarely assessed (Joerin and Nembrini 2005, Deyle and Schively 
Slotterback 2009, Laurian and Shaw 2009), in great part because 
the field of planning has not developed effective measures of 
learning (Deyle and Schively Slotterback 2009). Some studies 
have used the standard deviation of opinion (Schively 2007) or 
an adjustment of expectations (Deyle and Schively Slotterback 
2009) to trace convergence, apparently adopting a sociocultural 
perspective on learning (Greeno et al. 1996) similar to the theory 
of learning known as “convergent conceptual change” (Roschelle 
1992). However, convergence is not always equivalent to learn-
ing, only to consensus or persuasion. The participatory modeling 
literature provides assessment frameworks that are more in line 
with critical examination of beliefs and the integration of diverse 
forms of knowledge (e.g., Jones et al. 2009, Smajgl 2010), which 
places a higher premium on framing learning as a more cogni-
tive process of changing internal mental models (Johnson-Laird 
1983). We acknowledge the value of framing learning from 
both sociocultural and cognitive theoretical perspectives, as each 
highlights different aspects of the processes at play. We focus the 
assessment on how stakeholders individually and jointly learn 
to reason about the complexity of environmental problems and 
how they apply that reasoning to collectively formulate plans and 
policies for socioecological improvement. We collected data that 
would speak to each of these areas. 

In many respects, the activities that take place within col-
laborative planning meetings strongly resemble what is known in 
the educational world as Problem-Based Learning (PBL), where 
groups of learners are given a real-world problem to solve and go 
through an iterative series of facilitator-guided problem-solving 
steps (e.g., problem definition, hypotheses generation, data 
collection and analysis, reflection and discussion on potential 
solutions) (Evensen and Hmelo 2000). We adapted some of the 
methods used to track learning in such contexts (e.g., pretest and 
post-test surveys, analysis of videorecordings, and observations 
of meetings) to assess how our participatory ABM intervention 
affected the cognitive grasp of complex environmental problems, 
the resulting planning judgments, and the joint collaboration 
around the implementation of the plans. We draw from learn-
ing sciences and resource management literature to assess various 
dimensions of learning about complex systems (Wilensky and 
Resnick 1999, Hmelo et al. 2000, Jacobson 2001, Jacobson and 
Wilensky 2006, Hmelo-Silver et al. 2007), and the effectiveness 
of collaborative approaches in changing stakeholder individual 
beliefs and preferences toward collective goals of sustainability 
(Roschelle 1992, Siebenhüner 2005, Blackmore 2007, Deyle and 
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Schively Slotterback 2009, Jones et al. 2009, Smajgl 2010), and 
policy innovation and support (Borowski and Hare 2007, Tidwell 
and van den Brink 2008). We evaluated changes in participants’ 
tendency and ability to do the following:
•	 Reason about complexity to inform planning decisions, as they 

try to explain the causes of the impacts they observe in the 
simulations across temporal and spatial scales, shift from 
a structural to a functional perspective of the problem, 
acknowledge the potential of planning outcomes to be 
affected by multiple factors, and generate potential solutions 
for socioecological improvement that are sensitive to the webs 
of influence in the system;

•	 Engage in collaborative deliberation, where adversarial 
emphasis is replaced by common conception of the problem 
and collective goal achievement as a result of understanding 
interdependences in the webs of influence in the system;

•	 Generate creative and viable implementation plans for 
socioecological improvement, as stakeholders trust the validity 
of the lessons learned about the complexity of the problem 
through modeling and translate these lessons into plan 
development, adoption, and implementation; and

•	 Use modeling to explore the planning problem and its possible 
solutions, as they make judgments about inputs to learn 
how they shape outcomes, interpret outputs, communicate 
effectively about phenomena revealed by modeling and 
discuss their implications for planning.

The remainder of this paper presents the case study in which 
this approach was applied, the details of our intervention, and 
the findings around the four dimensions mentioned previously. 
Within each dimension, we describe what we learned and how 
we learned it, and the implications for participatory modeling in 
planning contexts. We conclude with future directions for research 
and for practice using these tools.

The Context: Groundwater 
Depletion in Northeast 
Illinois
Groundwater is an open-access resource, meaning that users 
cannot be excluded from tapping into it without incurring very 
high costs, and each unit consumed by a user cannot be used by 
any other user. As withdrawals cause cones of depression around 
wells, the groundwater decline affects neighboring areas, thus 
making it more costly for others to extract water from the aqui-
fer. Because it is so costly to exclude others from accessing the 
resource, the incentives are there to deplete it in a literal race to 
the bottom. Physical and socioeconomic factors contribute to the 
complexity of groundwater resources. On one hand, groundwater 
is connected to surface water systems and their replenishment and 
discharge rates are influenced by biophysical conditions that vary 
over space and time (e.g., hydraulic conductivity, aquifer depth, 
aquifer confinement, water levels, soil conditions, vegetation, pre-
cipitation). This dynamic interaction makes it hard to anticipate 

how the resource will respond to either physical changes or human 
use, or determine how much water is available for a variety of uses. 
Hydrological studies heavily rely on data collection on various 
points of an aquifer, but connecting the data over time and space 
into a dynamic understanding is not straightforward. Land-use 
decisions also are intimately linked to the spatial and temporal 
patterns of groundwater levels. When multiple users depend on 
the resource, differing beliefs of management costs and benefits 
make it hard to identify the causes of decline and define the re-
sponsibility for action. Further complicating the implementation 
of appropriate measures is the intervention of legal processes where 
decisions are made based on precedent and resources for litigation, 
rather than on an understanding of resource dynamics. Therefore, 
planners and stakeholders need to consider land-use patterns and 
the factors driving them, how water-use patterns emerge from the 
spatial distribution of economic activity, and how groundwater 
responds to these stresses, to ultimately understand groundwater 
depletion and coordinate action to reverse it (Tidwell and van 
den Brink 2008, Zellner 2008). 

The prospect of groundwater shortages is very present in the 
suburban areas of Chicago, even when the region has abundant 
water resources. Lake Michigan diversions are infeasible eco-
nomically, logistically and legally because of the Great Lakes–St. 
Lawrence River Water Resources Compact (McHenry County 
2009, Council of Great Lakes Governors 2011). Consequently, 
many communities that are not currently connected to this surface 
water source are left to rely only on their aquifers for water supply. 
McHenry County is a rapidly urbanizing area in northeast Illinois 
facing this challenge (see Figure 1). Groundwater concerns in the 
county include increased groundwater pumping, which results in 
declining levels for consumption and for recharge of surface water 
bodies, and potential for groundwater contamination from chang-
es in land use and contaminated materials spilled on the surface. 
Responding to this challenge, the county government convened 
a Groundwater Task Force in 2008 to prepare a series of recom-
mendations for groundwater protection. The group included 
representatives from local units of government, planners, members 
of councils of governments, county officials, real estate profes-
sionals, contractors, and environmental nonprofits. The resulting 
Water Resources Action Plan (WRAP) offers general guidelines for 
future development assumed to benefit the natural environment, 
but does not specify implementation of these recommendations 
or examine how they would work when translated into practice. 
Despite these planning efforts, conflicts persist around defining 
implementation strategies because of inadequate knowledge of 
the interaction effects in complex resource use. So, for example, 
while the plan encourages conservation development to enhance 
recharge, it does not give any indication of how the scale of such 
development might indeed negatively affect recharge, or how it 
compares to drawdown rates generated by this and other types of 
development. Stakeholders who shared broad sustainability goals 
continued to describe divergent narrowly focused solutions that 
did not recognize or respond to the complex interaction among 
current and future users with the shared resource. These were 
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the stakeholders we hoped might use ABM to improve plans to 
coordinate future water use in McHenry County.

Method
In line with the design recommendations we distilled for encour-
aging novices to learn about complex systems through participa-
tory modeling and for supporting collaborative planning (see 
“Designing a Participatory Modeling and Learning Process for 
Environmental Planning”), we sought to work with a diverse 
group of 16 stakeholders in a series of meetings that alternated 
between model building and discussion, exposing participants to 
a progression of models with different degrees of detail about the 
interaction between land-use decisions, water use, and ground-
water levels. With the models, stakeholders explored policy and 
behavioral scenarios, discussed implications for planning and 
policy, and gave feedback on future model versions. To facilitate 
complex systems learning, stakeholders were asked to work in 
small groups of two or three people per computer, so that they 
would engage more directly with model exploration, and then 
reconvene to discuss the findings and planning implications 
in the larger group. We assessed how stakeholders learned to 
reason about the complexity of their environmental problem by 
engaging in participatory ABM, how they derived insights from 
this experience, and how these insights affected their positions 
about the problem and potential solutions and their planning 
and policy discussions.

Participants
We approached members of the Task Force who had played a 
role in developing the WRAP for McHenry County (see “The 
Context”). The stakeholders now faced the challenge of imple-
menting a combination of policies and programs. We offered to 
assist them in learning how to use ABM to translate the WRAP 
into implementation. Sixteen members of the Task Force agreed 
to participate in our study. Many of them were homeowners in 
McHenry County, and they represented public officials, envi-
ronmental advocacy organizations, and resource management 
professionals. The group did not contain any representatives of 
real estate, business, or private water operator interests. 

Participatory Modeling Process
We conducted a series of four collaborative planning meetings 
over a three-month period with our participants. Prior to the 
first meeting, the viewpoints of the group generally were favor-
able toward the recommendations included in the WRAP.  The 
meetings were structured around a scaffolded learning process 
that allowed the participants to become familiarized with the use 
of ABM and how it can be used to understand the complexity of 
land-use and groundwater interactions (see Table 1). Stakeholders 
worked individually and in small groups around a progression 
of models—from highly abstracted models of traffic, of land-use 
change and of land-use and groundwater interactions, to geo-
graphically detailed integrated land-use and groundwater models 
of McHenry County—to recognize and assess the interactive im-
pacts of different implementation strategies. Stakeholders learned 
how to use the models, understand the relationships among the 

Figure 1. McHenry County, Illinois
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Table 1. Structure, timing, and activities of the four participatory modeling meetings

Meeting 1 (November 18, 2010): Meeting 2 (December 2, 2010):
•	 Structured brainstorming activity

•	 Stakeholders in small groups define and link problem causes 
and solutions

•	 Researchers help combine group brainstorms to uncover 
complexity and conflicts

•	 Researchers introduce stakeholders to ABM (Traffic Basic 
Model)
•	 Interface overview (sliders, graphs, displays)
•	 Concepts of complexity (emergence)
•	 Rudimentary programming, changing rules, and observing 

outcomes

•	 Researchers guide stakeholders’ “play” with ABM (SOME, 
then SOME-GW)
•	 Interface overview (new components)
•	 Discussion and exploration of assumptions, rules, and inter-

action effects
•	 Stakeholder explanation of observed effects

•	 Researchers elicit stakeholder feedback for further model de-
velopment

•	 Administered homework for individual work (SOME-GW)

Meeting 3 (January 12, 2011): Meeting 4 (January 26, 2011):
•	 Researcher facilitates discussion on individual homework
•	 Researcher demonstrates application of ABM to same prob-

lem in a different geography, how to use data to inform and 
adapt models

•	 Stakeholders use worksheets to provide feedback on agents, 
rules, and parameters to help codefine the detailed model 
simulations

•	 Researcher presents summary of collectively determined 
changes made to geographically based model and simulation 
results for WRAP scenarios

•	 Group discussion on implications for WRAP implementation 
and policy innovation
•	 What worked and what didn’t? Why?
•	 Alternative policy scenarios

•	 Researchers guide stakeholders “play” with ABM (stylized ver-
sion of SOME-GW for McHenry County) to confirm results 
and explore new policies

•	 Group discussion on WRAP implementation and future di-
rections

Figure 2. Interface of Netlogo Traffic Basic model (Wilensky 1997)



84 URISA Journal • Vol. 24, No. 1 • 2012

components, interpret the meaning of the outputs based on these 
relationships, and modify the models with new insights from the 
discussions (Table 1). For some of the activities, stakeholders were 
given worksheets and cards to take notes and aid in reflection and 
discussion in the larger group. 

Meeting 1 
The purpose of the first meeting was to make the problem defini-
tion and its complexity explicit and expose the stakeholders to 
tools that support the exploration of complexity and how they 
can be used to derive insights for behavioral and policy changes. 
In this meeting, participants worked in small groups to define 
the causes for the groundwater problems in the county, outline 
possible solutions, and identify relevant interactions that might 
either exacerbate the problem or introduce barriers for the effec-
tive implementation of solutions to the problem, using note cards 
to organize the discussion. As the complexity of implementation 
became apparent, it provided the basis for introducing ABM as 
a way to explore the implications of such complexity. The first 
agent-based model that stakeholders were presented with is the 
Traffic Basic model (Wilensky 1997), included in the library 
of the Netlogo ABM platform (Wilensky 1999) (see Figure 2). 
We selected this model as a relatively simple way to introduce 
participants to the Netlogo interface (visual display, plots, slid-
ers, buttons, monitors), identify agents (cars), and examine how 
local interactions (through acceleration and deceleration as they 
encounter cars ahead of them) may give rise to systemwide effects 
(traffic jams). The researchers facilitated stakeholders’ explora-
tion and modification of small sections of the code to show how 
interaction rules can be represented and changed in these models. 
This activity was followed by a mediated group reflection on how 
individual driving behavior could lead to the formation of traf-
fic jams and discussion on implications for behavioral changes 
and driving education, thus illustrating for the stakeholders how 
ABMs may be used as springboards for generating policy ideas. 

Meeting 2 
In this meeting, the intent was for stakeholders to become ac-
quainted with the complexity of land-use change and, ultimately, 
how patterns of urbanization are tied to water consumption and 
consequently to aquifer conditions. Exploring these interconnec-
tions with the model would enable them to derive insights about 
the relative effectiveness of different planning measures for the 
protection of water resources. Stakeholders were first exposed to 
a simple land-use model based on the SOME model (Rand et al. 
2002, Brown and Robinson 2006) and some aspects of the WU-
LUM model (Zellner 2007). It includes resident and service center 
agents that make location decisions based on their preferences for 
such things as urban and natural amenities. The residential agents 
(represented by yellow houses in Figure 3 (a)) are created at each 
time step and make location decisions based on the location of 
service centers (represented as red squares in Figure 3 (a)), the 
natural beauty of the landscape (represented by varying colors 
of green cells), and zoning restrictions that limit the number of 

residential agents that can locate in each cell. Service centers are 
created as residential population grows, based on the location of 
the newest residents. Depending on the model settings, develop-
ment may deteriorate the natural beauty of its surroundings. The 
feedback between residential development, commercial develop-
ment, and natural beauty thus affects subsequent directions of 
development. Stakeholders were guided in their exploration with 
this model to understand the effects of the various parameters 
in the model (e.g., growth rate, amount of information about 
potential location sites, preference for proximity to service centers 
versus natural beauty, the feedback of environmental degradation, 
density restrictions). They investigated these effects by using the 
visual display (Figure 3(a)) and plots of simple metrics of urban 
expansion, average happiness of the residents, and regional eco-
logical quality. The researchers facilitated the group’s discussion 
and formulation of explanations for how localized interactions 
among residents, service centers, and natural beauty could lead 
to different land-use and environmental patterns. 

Facilitators then showed the stakeholders how to use the 
SOME-GW model (Zellner 2011) to explore how land-use pat-
terns might affect groundwater levels. The SOME-GW model 
couples groundwater dynamics with the land-use component of 
SOME. The groundwater component is represented through 
diffusion rules between a patch and its immediate neighbors, 
based on Darcy’s law of flow and taken from the WULUM and 
WULUMOD models (Zellner 2007, Zellner and Reeves 2010). 
The emerging rate of flow and groundwater gradient (represented 
by varying colors of blue cells in Figure 3 (b) vary with aquifer 
characteristics such as boundary conditions and hydraulic con-
ductivity, which are parameters of the model. Residential agents 
now are able to pump water from the groundwater system at a 
consumption rate specified by the user, creating cones of depres-
sion that affect the availability of water for themselves and for 
neighboring agents. The model illustrates which residents are in 
deficit (shown in brown in Figure 3 (b) when water levels drop 
beyond a threshold. Additionally, groundwater levels may affect 
the location of new residents through the agent’s sensitivity to 
groundwater decline. Following a preliminary introduction to 
the SOME-GW model, the researchers elicited initial feedback 
on how the model interface could be made more meaningful for 
the purposes of plan implementation for groundwater protec-
tion, by adding or modifying inputs (e.g., sliders) and outputs 
(e.g., plots). Requests for input user interface features were, in 
effect, endorsements of the variables stakeholders most desired 
to manipulate, and requests for output user interface features 
indicated the outcomes of most interest to the stakeholders. The 
stakeholders were given specific instructions for guided explora-
tion on their own, to make sense of the mechanisms in the model 
and the effects of the various model parameters on output patterns 
of groundwater levels and deficit.

Meeting 3 
The purpose of the third meeting was to illustrate how models 
such as SOME-GW can be adapted to a specific geographic 



URISA Journal • Zellner, Lyons, Hoch, Weizeorick, Kunda, Milz 85

context, to help stakeholders provide detailed feedback and in-
dicate sources of data to make the model relevant to the issues in 
McHenry County. The researchers first facilitated a discussion in 
which participants could discuss their experiences using the first 
version of SOME-GW provided in Meeting 2 and attempted to 
explain the resulting patterns through the mechanisms and pa-
rameters of the model. Following this discussion, the lead author 
presented a summary of the application of similar models in a 
different geographic context—Monroe County, Michigan—ex-
plaining how sociodemographic and hydrological data can be 
used to adapt a stylized version of the model they had explored 
into a model that is more relevant to their planning efforts. We 
provided participants with a worksheet listing potential agents, 
rules, and parameters (many informed by the feedback obtained 
from the stakeholders in prior meetings) that could be included 
in a more detailed version of SOME-GW. Participants elaborated 
from this list, based on their experiences with the preliminary ver-
sions of the modeling tools and on their knowledge of the region. 
We intentionally delayed the elicitation of the desired “interior 
parts” (agents, rules, and parameters) of the model until after 
the participants had had enough modeling experience that they 
would have a conceptual framework to help them organize the 
relevant information into a model-ready form, with a preliminary 
understanding of what local interactions were likely to affect the 
resulting groundwater depletion patterns.

Meeting 4 
In the final meeting, participants were presented with simula-
tions produced by a revised version of SOME-GW, informed by 
their feedback and the data suggested in Meeting 3, which were 
used to test the effects of the policy scenarios inspired by the 
WRAP that the stakeholders selected as being the most worthy 
of exploration (see Table 2). The purpose of this meeting was 

to allow stakeholders to examine and derive insights from the 
results of a highly concrete and detailed simulation, and to give 
stakeholders an opportunity to conduct their own explorations 
with a simplified, more abstract version of the model (to reduce 
the distraction of extraneous details and to speed up simulations), 
and to further discuss planning and policy implications for the 
county. The SOME-GW had been modified in between Meetings 
2 and 4 to include the additions requested by the stakeholders: 
new actors reflecting the variety of water users in the county, rules 
for location and assignment of both private and public wells, 
policy settings specific to the WRAP, and new outputs for water 
consumption and drawdown. In addition to the visual display 
(Figure 3 (c)), the model interface included additional graphs of 
the effects of groundwater drawdown (e.g., average, minimum, 
and maximum drawdown; area and households in deficit). The 
simulation results with the detailed model showed that the WRAP 
scenarios had virtually no impact in preventing widespread 
groundwater depletion and deficit. The only behavior that made 
a more substantial difference was reducing the consumption of 
water per household, which both delayed the onset of the general-
ized deficit and reduced the area and level of drawdown. These 
results were surprising to the stakeholders, who were hoping that 
the WRAP would have a greater beneficial effect. The research-
ers facilitated a discussion in which stakeholders were asked to 
explain these results, based on the mechanisms and the data in 
the model. They identified continued growth as being the cause 
of the problem, but were reluctant to modify this development 
goal for the county (see more details in the “Findings” section). 
They then used the simplified model to confirm or question the 
results obtained with the detailed model. In response to these 
explorations, a stakeholder proposed a new rule involving the 
introduction of a policy allowing injection into the aquifer. With 
the group’s agreement that this was worthy of experimentation, 

Figure 3. Visual display of (a) SOME model, (b) SOME-GW model, and (c) SOME-GW with McHenry County data.  (Note: brighter shades 
of green = higher natural beauty, darker shades of blue = higher groundwater levels, red squares = service centers, yellow houses = resident agents, 
brown houses = residents in water deficit) 
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they then were assisted through an exercise of adding this rule 
in the model. The stakeholders modified the code and then ran 
simulations with the new rule to examine its effect. This exercise 
generated more discussion about planning implications for the 
county and suggestions for further modeling efforts. 

 

Data Collection and Assessment
We conducted a pretreatment and post-treatment survey in which 
participants were asked about their interest in groundwater is-
sues, their general knowledge about groundwater systems, and 
their beliefs about the contributors and solutions to groundwater 
depletion.  We examined the differences in responses between the 
pretest and post-test surveys to estimate changes in stakeholder 
understanding of the complexity of the problem of groundwater 
depletion in their region, their willingness to sacrifice personal 
gains for collective goals, their commitment to specific solutions, 
and their understanding of modeling and its application to plan-
ning. We also observed interactions and discussions during the 
meetings and videotaped each meeting and coded the dialogue 
based on the four learning process and outcome dimensions 
outlined in the introduction. We used this data to examine how 
stakeholders learned about complexity by modifying and explor-
ing with the models, their level of trust in the tools, and how they 
used them to create a shared understanding of the problem and 
of the effectiveness of solutions and to propose new alternatives. 
We also used the videotapes to identify where major obstacles 
exist to stakeholder appropriation and meaningful use of these 
tools in their planning process.  

Meeting attendance was uneven. A total of 15 participants 
agreed to participate, but attendance was sporadic: 13 participants 

attended the first meeting, 12 attended the second, eight partici-
pants were present for the third, and there were five participants 
at the final meeting.  Only three participants attended all four 
sessions. The absence of most of the group at the final meeting 
made beginning-to-end comparisons difficult. Additionally, not 
all participants took the survey and only four of them completed 
both the pretest and post-test surveys. The findings we report thus 
rely mainly on our observation of changes within a single meeting 
or across two meetings for clusters of participants or occasionally 
an individual, with some support of survey responses and video-
tapes to validate inferences about learning about complexity with 
ABM and the transfer of this learning to planning judgments.

Findings
We set out to study how stakeholder engagement with ABM in a 
collaborative setting contributed to the four learning process and 
outcome dimensions that are relevant to planning for complex 
environmental problems. We report our findings in relation to 
each dimension and then offer a brief conclusion describing future 
research directions.

Reasoning about Complexity to Inform Planning
In the first meeting, stakeholders learned how agent-based models 
represent interactions and how these interactions can lead to sys-
temwide changes. Active learning ensued in the second meeting 
as stakeholders found out how adjusting individual preferences 
for location could yield different land-use patterns and, in turn, 
affect social utility and natural beauty. Most stakeholders figured 
out that there was a connection between these scales, but many 
did not grasp how this was accomplished. When using the styl-
ized land-use and groundwater model in Meeting 2, stakeholders 

Table 2. Simulation scenarios based on recommendations from the Water Resources Action Plan (WRAP)

Parameters Scenarios

Baseline Urban Growth 
Boundary

Preserving SARAs 
(Sensitive Aquifer 
Recharge Areas)

Preserving SARAs 
+ Conservation 
Development

Preserving SARAs 
+ Conservation 
Development + 
Conservation 

Water
Preference for proximity to 
services over proximity to 
natural beauty 

0.5 0.5 0.5 0 0

Impact of development on 
natural beauty

0.5 0.5 0.5 0 0

Development boundaries None Municipalities Preserving SARAs Preserving SARAs Preserving SARAs

Water consumption rate 
(m3/household/year)

361 361 361 361 200

Development impacts re-
charge

1 1 1 0 0
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balked as they realized that none of the proposed conservation 
solutions prevented groundwater depletion. Explorations in the 
fourth meeting with more detailed models for McHenry County 
(with new rules and geographic and hydrological data) enhanced 
the validity of the exercise but did not alter the trial results stake-
holders had discovered. By making decision rules and interactions 
explicit, the models helped stakeholders understand counterin-
tuitive systemwide effects that may arise from the interaction of 
localized decisions and explain the disappointing results: 

 “ . . . and then there’s the idea that we’re gonna do this and it’s 
gonna have such a big impact, and it really doesn’t.” 

“ . . . this all makes sense actually. What you’re finding makes 
perfect sense because even if you protect [the sensitive aquifer 
recharge areas] and do conservation design and do water con-
servation you’re still adding residents.” 

These quotes illustrate a significant break from the common 
conception in these areas that residential and commercial growth 
should be pursued as the main engine of economic development, 
and that conservation development will make growth sustainable. 
Acknowledging the lack of viability of the WRAP is necessary 
(although as we will show, not sufficient) to encourage creative 
planning.

Ironically, although stakeholders showed possessing a better 
grasp of the problem, they had difficulty articulating the underly-
ing idea of complexity that the models exposed, mostly because 
of their discomfort with computer modeling. One stakeholder 
admitted:

“If I had to sit here and explain it, I would have a hard time ex-
plaining the background knowledge, this is how we developed it.”

At the last meeting, after identifying the negative effects of 
growth and considering the possibility of injection as an alterna-
tive solution, stakeholders did not see how they could further use 
modeling to continue illuminating their discussions on planning 
and implementation for groundwater protection. Moreover, the 
post-test survey did not show a clear effect on ways of thinking 
about the problem or its solutions, beyond a tenuous shift toward 
favoring behavioral changes over regulatory approaches. Although 
stakeholders expressed satisfaction with using a progression of 
abstract to detailed models to learn about ABM and its application 
to planning for water protection, the complexity of the problem 
(e.g., the number of relevant actors and factors, the interactions 
across scales and with the aquifer dynamics) and stakeholder 
discomfort with computer modeling may have made it hard for 
participants to derive more general principles of complexity and 
envision how they could incorporate this modeling practice into 
their regular planning activities.  More time would be necessary 
to go through more iterations of model exploration and modi-
fication and increase familiarity with both computer modeling 
and complexity. 

Engaging in Collaborative Deliberation
When stakeholders discussed how policies and behavior might 
affect the groundwater levels in the county, they did not describe 
antagonistic positions or conflicts between individual and col-
lective goals. As they explored implementation alternatives with 
the models, most stakeholders recognized that individual water 
users would need to change their behavior and consume less water 
(self-interest) to preserve the resource for the region (collective 
interest). However, when asked if they, as residents of the county, 
would pay for water, some of the respondents resisted:

“I don’t know.  You would have to convince me that the worth 
of water is such that I should have to pay . . .”

“I’m actually not sure I even want to answer this.  We have our 
own well.  I’d have to have a real understanding of the reasoning 
behind a fee like that.  Scary . . .”

These stakeholders understood the collective need of the 
county and how individual behavior needed to change, but they 
did not want to share in this responsibility. The first reason is that 
the agents in the models were abstracted from the practical moral 
relationships each stakeholder inhabits. The cognitive awareness 
of these effects did not engage the emotional attachments that 
each stakeholder possesses for his or her personal way of life. 
Simulating change for everyone works differently than imagin-
ing change for oneself. Second, reliance on rational planning to 
prepare the WRAP focused on technical solutions that ignored 
social and environmental interdependence, limiting the under-
standing of complexity as well as the recognition of meaningful 
moral responsibility. 

Additionally, stakeholders actively distorted the practical 
meaning of the simulation results and thus reinforced the exist-
ing viewpoint rather than transformed it. For instance, instead 
of using the simulation results—which had been collectively 
validated—to reconsider their commitment to continued growth 
and expansion, two stakeholders shifted temporal scales to argue 
that had WRAP measures been applied decades earlier, current 
depletion risk would be much less. Therefore, the WRAP compo-
nents needed to be adopted quickly so that growth could occur: 

“[Growth] is going to happen anyway . . . “

“We can absolutely continue to grow . . . but we have to do 
something now.”

Instead of using knowledge to amend the plans for the future 
that would require a change in moral responsibility, they twisted 
the knowledge to fit a fantasy reconstruction of the past to sup-
port the measures included in the county plan.

Generating Creative and Viable Implementation 
Plans for Socioecological Improvement
Stakeholders joined the group already committed to the WRAP. 
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They wanted to learn how to use ABM to persuade other citizens 
in the county to adopt the plan recommendations. Engaging 
in participatory ABM did shift the focus for some stakeholders 
from prioritizing certain solutions already in the WRAP to con-
sidering combined solutions and other alternatives that were not 
represented in the plan. Some did question assumptions about 
the county plan even as they resisted the practical implications 
of these questions. Most admitted learning important insights 
using the models in a collaborative environment, but they were 
not convinced that the same type of deliberative process they 
experienced together might help build political will for alternative 
management strategies. One stakeholder who clearly grasped the 
meaning of the experience put it like this:

“I don’t think we have the political will or the legal tools to really 
implement that; to say that we’re gonna stop population growth 
in McHenry County at this level.”

The interaction throughout the participatory modeling 
meetings provided a safe venue to propose new solutions. In the 
last meeting, one of the participants offered an alternative to 
compensate for the growth that had not been mentioned in the 
WRAP or in any of the previous meetings: injecting wastewater 
back into the aquifer. Put forth tentatively: 

“I’d never bring this up in a public meeting.”

The idea stimulated a quick model revision and simulation to 
test the effect of injection. The promising results opened up dis-
cussion giving some stakeholders reason to reconsider their prior 
plan convictions. The discussion, however, did not consider the 
risks in using injection technology, especially given that it would 
be implemented by individual well operators and thus would 
be very costly to monitor. Still, the engagement with modeling 
exploration and modification allowed them to trust the results 
enough to broaden the range of policies the group was willing to 
entertain, overcoming some of problems often encountered in 
participatory modeling (see “Participatory Modeling and Col-
laborative Planning”). 

Using Modeling to Explore the Planning Problem 
and Its Possible Solutions
Stakeholders learned to use the Netlogo interface to change 
parameters and read estimate outputs in maps and charts. They 
developed competence adjusting parameters to test different 
policy schemes coded by the research experts and how to explain 
the outputs based on their understanding of the underlying rules. 
They were able to suggest “external” model components (such as 
inputs and outputs) and internal components (such as rules and 
agent types). When we asked them to conduct their own explora-
tion, however, it was hard for them to do so in a systematic way, 
despite our recommendations. Moreover, they did not dedicate 
much time outside of the meeting to conduct the explorations 
we designed for them. 

We expected that if model estimates did not fit stakeholder 
expectations that they would ask about the rules embedded in 
the models and want to peer inside the “black box.” This did 
not happen, however. Stakeholders expressed discomfort using 
computers, let alone manipulating the code, and relied heavily on 
the moderators to guide them and make changes to the models. 
There was resistance until the very last meeting when testing 
the injection policy offered some practical promise of offsetting 
depletion. The facilitator guided the group in changing the code 
of the model. Stakeholders’ initial resistance quickly changed to 
enthusiasm when they experienced how it worked and understood 
the change and its implications for groundwater levels. One 
captured this last-minute shift exclaiming: 

 “It’s so easy!”

Confusion haunted interpretations as stakeholders mistook 
an agent for a landscape feature or policy condition or tried to 
define actions and interaction. A few referred to agent death 
rather than agent in water deficit. Some of this confusion might 
be remedied by changes in visualization icons and colors. De-
spite the confusion, participants were able to comprehend early 
in the process the basic interactions of the model and develop 
rationales for the results produced by changes to model inputs, 
sometimes making connections to their own personal experiences.  
One participant made a distinct point about the importance of 
paying attention to how the rules are implemented in the model 
and what they represent, to derive meaningful insights to inform 
planning questions: 

“[Y]ou have to ask the right questions . . . [A]re you looking 
for people that are trying to protect the environment or are they 
looking for beauty?  Are they looking for service centers? You know 
it depends on the information you are looking for.”

Stakeholders did offer useful suggestions for improving the 
model adding inputs (e.g., water recharge) and outputs (e.g., 
display maximum and minimum groundwater drawdown). These 
suggestions improved in detail and scope over time. For instance, 
simpler actors (e.g., golf courses) and impacts (e.g., reduction of 
recharge from development) were popular early on, while more 
complex actors (e.g., municipalities setting specific regulations) 
and metrics (e.g., showing effects of policies on neighboring 
jurisdictions) were more frequently proposed in later sessions. 
This demonstrated improvement in using the tool to grasp the 
complexity of the problem. Most important, this demonstrated 
that the participants were pursuing lines of investigation that 
followed from their own interests and echoed their deepening 
understanding of the system: both hallmarks of genuine inquiry 
learning.

From the first meeting, we distinguished exploratory from 
predictive models. As they learned how to engage in ABM, this 
difference became clearer to the stakeholders. They did not always 
grasp the complexity of the effects the model simulated, but they 
recognized that the results were not predicting the future. These 
remarks capture this recognition:
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 “It takes existing ideas and makes them applicable. It’s a useful 
tool for elaborating on an argument that’s already there.” 

“I don’t think we need a predictive tool. I think we already know 
what’s going to happen. We definitely need this for a planning 
tool to say if we do x, y, and z this will happen. If we don’t, this 
is what’s going to happen, and I think that’s a better use of this 
kind of tool. . . .[T]his would be different if a location didn’t
already have the data-driven, predictive model. Since we already 
have that . . . we need a planning tool.”

Despite these endorsements of the utility of ABM for plan-
ning, in the end the stakeholders did not embrace ABM as a 
practice they felt competent and motivated to use on their own. 
We offered to continue meeting with them to conduct further 
model refinement and exploration. Instead, they suggested that 
we show the model estimates to municipal officials throughout 
the county to underline the urgency of the depletion risk and 
build political support for the plan (i.e., their proposal was, in 
effect, identical to a more traditional use of modeling in plan-
ning, presented by experts to nonexpert audiences) even though 
the participatory modeling had exposed the plan’s limitations. 

Conclusion
Early in the process, stakeholders had expressed commitment to 
various solutions that re-created the principles of the WRAP but 
did not recognize how these solutions might interact with the 
underlying environmental complexity or with one another. The 
enhanced understanding of complex interactions between devel-
opment decisions and groundwater sustainability in McHenry 
County through participatory ABM challenged familiar assump-
tions about the impact of planning policies and regulations, and 
reduced the early commitments to these measures as stakeholders 
jointly witnessed how water shortages could not be prevented 
if residential expansion continues to occur at the current rate. 
Stakeholders were reluctant to challenge this goal throughout, 
but over the course of the four meetings were more willing to 
publicly acknowledge the consequences made evident by the 
participatory modeling and simulations. Their collective learning 
produced a solidarity that allowed for new planning strategies to 
emerge, best exhibited in the response to the injection scenario. 
In this shift, the role of ABM is that of organizer of various types 
of knowledge—scientific, political, local, individual—in a rule-
based and process-based representation that is more amenable 
to, if not inspection in this case, to explanation and connection 
to stakeholders’ experiences of the problem and the possible 
planning solutions. 

Despite its potential, significant difficulties arose in this 
process. Primarily, the declining participation in the meetings and 
the surveys reduced both the richness of the discussion and made 
it difficult, from a research perspective, to track changes through-
out the four meetings. The drop-off in stakeholder attendance 
was most likely because of the discomfort participants felt with 
computers, and was likely compounded by the temporal spacing 

of the meetings (while most meetings were scheduled every two 
weeks, there was a one-month gap between Meetings 2 and 3 
owing to holidays, which also was when most of the disengage-
ment was observed). The general public is not typically trained in 
reasoning with models, and the tools available, although couched 
as “friendly,” are not so for most nonexpert modelers. In particu-
lar, the unfamiliarity of the stakeholders with written computer 
code (even computer code that has been simplified for use with 
elementary students) likely discourages continued engagement. 
Research is under way by some of the authors to experiment with 
more accessible interfaces to allow users to more easily provide 
input, translate conceptual rules into code, and derive meaning 
from the outputs of complex system simulations.

Second, the use of models to estimate complex interaction 
effects did not readily result in a transfer of these insights to 
planning practice, at least not in the short time frame of this 
experience. While stakeholders showed evidence that they were 
able to use modeling to explore and recognize complex interac-
tion effects, they were not willing or in some cases were unable to 
interpret these effects in a cognitively coherent or morally relevant 
fashion. The emotional and moral commitments people make 
inspire resistance even in the face of self-generated simulation 
evidence. When repeated tests of favorite policies did not remedy 
depletion, stakeholders neither challenged the model nor revised 
prior plan assumptions about local development prospects. They 
instead composed arguments and narratives to sidestep the dis-
crepancy. More time exploring these arguments might have led to 
a broader cognitive and moral awakening to the interdependence 
that accompanies reliance on a common good such as an aquifer 
and how plans for coordination to ensure sustainability require 
important shifts in responsibility. 

Although we offered to continue with an additional set of 
participatory modeling meetings, and stakeholders acknowledged 
what they had learned through the participatory modeling pro-
posed here, they still preferred the traditional use of models in 
planning: having experts produce and present outputs (answers) 
in public meetings with other policy makers. We believe this also 
may be because of a culture of passive consumption of model-
ing outputs, where answers are provided by the experts to feed 
into a political process, instead of a practice of cogeneration of 
knowledge, values, and plans among different sectors of expertise 
(Zellner 2008), precisely because with most kinds of models, it is 
difficult for nonexperts to engage in modeling activities. 

Learning new ways to conceive and represent familiar prob-
lems and solutions proved more difficult to inspire than our design 
had allowed. Overcoming the barriers we encountered will not be 
straightforward. It is likely that the demand for expert facilitation 
will remain, even when we make improvements to the software 
to reduce some of the user discomfort and increase user access 
to the rules in the model, and adjust the social process to allow 
for more exploration and reflection. Nevertheless, the signs of 
active inquiry learning witnessed even in this limited study ar-
gues that agent-based modeling can and should be more actively 
incorporated as a critical component of plan making and policy 
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making around complex environmental problems, particularly 
as it helps communities integrate different forms of knowledge, 
perspectives, and expertise into a guiding collective vision for a 
sustainable future. 
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