A DISTRIBUTED MODEL FOR EFFECTIVE NATIONAL GEOSPATIAL DATA MANAGEMENT: BUILDING A NATIONAL DATA SHARING INFRASTRUCTURE

Jim Sparks
Philip Worrall
Kevin Mickey
Urban and Regional Information Systems Association
GIS Management Institute®
Discussion Paper #1
March 2014

A DISTRIBUTED MODEL FOR EFFECTIVE NATIONAL GEOSPATIAL DATA MANAGEMENT: BUILDING A NATIONAL DATA SHARING INFRASTRUCTURE

Comments or discussion:
Please send any comments and/or discussion via email to the authors.

GMI DISCUSSION PAPER

This is the first in what is intended to be a series of occasional GIS Management Institute® discussion papers. These papers do not represent the opinion of URISA.

We hope that publication of these papers will stimulate thought and open discussion about issues related to GIS management that are important to the GIS community.

Interested authors should send their papers to the URISA Executive Director for consideration by the GIS Management Institute®.
AUTHORS CONTACT INFORMATION

Jim Sparks, Geographic Information Officer, State of Indiana
Indiana Geographic Information Officer
Indiana Office of Technology
100 North Senate Ave.
N551 Government Center North
Indianapolis, IN 46204
317.234.5889 Office
317. 560.9033 Cell
gio@iot.in.gov
http://www.in.gov/gis

Philip Worrall, Executive Director, Indiana Geographic Information Council
Indiana Geographic Information Council, Inc.
777 Indiana Ave.
Suite 210
Indianapolis, IN 46202
317.504.4389 Cell
pworrrall@igic.org
http://www.igic.org
http://www.indianamap.org

Kevin Mickey, GISP, CTT+
Director, Geospatial Technologies Education
The Polis Center
Indiana University Purdue University Indianapolis
1200 Waterway Boulevard, Suite 100
Indianapolis, Indiana 46202
317.278.4929 Office
317.371.4479 Cell
317.278.1830 Fax
kmickey@iupui.edu
http://www.polis.iupui.edu/
A DISTRIBUTED MODEL FOR EFFECTIVE NATIONAL GEOSPATIAL DATA MANAGEMENT

OR

BUILDING A NATIONAL DATA SHARING INFRASTRUCTURE

ABSTRACT

For the past few decades geospatial professionals have developed vast quantities of data. Unfortunately, the potential value of these data is often unrealized or under realized. A report written by Peter Folger and published by the Congressional Research Service on April 27, 2012 titled Issues and Challenges for Federal Geospatial Information states that “Congress has recognized the challenge of coordinating and sharing geospatial data from the local, county, and state level to the national level, and vice versa. The cost to the Federal government of gathering and coordinating geospatial information has also been an ongoing concern. As much as 80% of government information has a geospatial component, according to various sources. The Federal government’s role has changed from being a primary provider of authoritative geospatial information to coordinating and managing geospatial data and facilitating partnerships. Congress explored issues of cost, duplication of effort, and coordination of geospatial information in hearings during the 108th Congress. However, challenges to coordinating how geospatial data are acquired and used—collecting duplicative data sets, for example—at the local, state, and Federal levels, in collaboration with the private sector, are not yet resolved.”

This paper will examine a number of impediments to effective data development and data sharing and offer solutions that reflect the employment of effective coordination, carefully directed funding, and the application of current information technology tools and strategies. We will also offer suggestions that will build upon the anticipated successes of these initiatives. In particular, we will examine the various roles of Federal, state, and local governments in regard to data creation and maintenance, data aggregation, creation of standards and guidelines, and data dissemination, and link these roles to strategies that have produced successful initiatives. We will then discuss how the lessons learned from these efforts might be incorporated into a national strategy.

STATEMENT OF PROBLEM

Over the past few decades, geospatial professionals across the county have developed geographic information systems (GIS) that include data about the built environment such as parcel boundaries and building characteristics, transportation and utility infrastructure, population demographics and much more. The applications of such data are vast - ranging from generating informative real time maps to modeling the potential impacts of a flood or other hazards to
community planning, environmental analysis, infrastructure inventorying, and natural resource management, to name a few.

Given that as much as 80% of government information has a geospatial component, the cost to Federal, state, and local geospatial data stewards to create and maintain geospatial data is significant and cost efficiencies gained by a practice of “building once, using many times” are easy to imagine. Case studies show the value of appropriately applied geospatial data and technology. For example, a 2008 Indiana study of the return on investment of statewide aerial photography found that “over $1.7 billion in Indiana projects and government operations are supported by the IndianaMap [a statewide map and geospatial portal]. In short, this means that an initial investment of $8.5 million in the IndianaMap supports over 200 times its value in projects and operations – with 90% of users indicating that they could not do their projects without it.” (Jill Saligoe-Simmel, 2008). Unfortunately, the potential value of these data is often unrealized or under realized.

Much success has occurred among different levels of government resulting in increased cooperation and, ultimately, in increased geospatial data sharing. Furthermore, while no single project or initiative completely resolves the challenges to effective data sharing, the summation of best practices gleaned from these experiences can inform a national data sharing model.

RETURN ON INVESTMENT

Geospatial technology and the data required by that technology is expensive. In fact, the annual cost of producing geospatial data is measured in billions of dollars. (Federal Geographic Data Committee, 2005). Yet, an investment in geospatial technology and data has consistently proven to provide a positive Return On Investment (ROI).

For example, the 2008 Indiana ROI study mentioned above, clearly underscores the value of the IndianaMap in support of projects and governmental operations across the state. That report also concluded that the return on investment of statewide orthophotography acquired in 2005 was 34:1 in less than three years of use. (Jill Saligoe-Simmel, 2008).

Similarly, analysis performed by a team from Richard Zerbe and Associates which focused on the costs and benefits of the development and use of GIS within King County, Washington agencies determined that “GIS technology appears to be an efficient, highly beneficial investment for King County. The full report presents various figures, but the most conservative estimate presented found that the use of GIS produced approximately $775 million in net benefits over the eighteen year period from 1992 to 2010.” (Richard Zerbe and Associates, 2012).

A 2007-2008 analysis performed by the Geospatial Information Technology Association (GITA) on behalf of the Iowa Geographic Information Council, calculated a 20 year Net Present Value of $271 million associated with the costs and benefits of the geospatial information technology for
all 99 counties of Iowa, 11 state agencies, three utilities plus Iowa One Call, and consulting firms. The study noted that “Many additional organizations were interviewed during the project but not all were able to provide quantifiable benefits.” (Stewart, 2008). Clearly, these intangible benefits had value but were not measured, thereby increasing the overall benefit level beyond the stated number.

While the methods of these studies differ, the results consistently showed that investments in geospatial technology and data resulted in a significant positive return.

IDENTIFICATION OF BEST PRACTICES (THE PIECES ARE ALL HERE)

The Authors truly believe the statement in the above title that “The pieces are all here.” This “wheel” does not need to be re-invented, but simply de-constructed with the best practice pieces identified and reconstructed to create a new and improved wheel. The following examples were selected from a multitude of geospatial initiatives. These initiatives were chosen because they reveal one or more of the best practices that should be applied to a national model.

The projects, program, and initiatives highlighted in this section can be categorized as efforts relating to creating or sharing data, coordinating geospatial activities, and developing and leveraging the technology to create and advance the use of geospatial platform. Several of these best practices fall into more than one category, as shown in Table 1.

<table>
<thead>
<tr>
<th>Best Practice</th>
<th>Data</th>
<th>Coordination</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Agriculture Imagery Program (NAIP)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>National Broadband Map</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Indiana Data Sharing Initiative</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>NSGIC "For The Nation" (FTN) Initiatives</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>USGS Liaison Program</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Homeland Infrastructure Foundation-Level Data (HIFLD)</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Indiana Silver Jackets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western States Contracting Alliance (WSCA)</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Geospatial Platforms</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Table 1: Categorization of the best practices described in this paper.

The National Agriculture Imagery Program (NAIP)

The National Agriculture Imagery Program (NAIP) grew out of the United States Department of Agriculture – Farm Service Agency (USDA – FSA) need for a nationally available and consistent imagery product to support America’s agriculture. NAIP was designed to support the basic need to create a historical imagery record that can quickly and accurately identify and
measure vegetation and crop boundaries for inventory and planning, and support the measurement of both the health and stress on vegetation not evident to the naked eye for crop analysis and yield estimates.

Program Description

The National Agriculture Imagery Program (NAIP) acquires aerial imagery during the agricultural growing seasons in the continental U.S. A primary goal of the NAIP program is to make digital orthophotography available to governmental agencies and the public within a year of acquisition. NAIP is administered by the USDA - FSA through the Aerial Photography Field Office in Salt Lake City (USDA-FSA-APFO).

The imagery data may be downloaded for free or copies purchased from the USDA. From the original DOQQ orthophoto GeoTIFF files, Compressed County Mosaics (CCM) are produced for easy distribution. The DOQQ file area corresponds to the USGS 7.5 minute topographic quadrangles. For each state, the most recent year of NAIP Imagery DOQQs is also available on an ArcGIS server. (USDA FSA Aerial Photography Field Office (APFO), 2011).

Program Best Practices

NAIP is a national cooperative program with a proven track record. Beginning in 2003, NAIP was acquired on a 5-year cycle. 2008 was a transition year, and a three-year cycle began in 2009. An historic archive of NAIP imagery now exists for each state. In some states up to eight (8) different years of historic NAIP imagery are available. States for 2012 are shown in Figure 1, and previous years are shown in Figure 2 below.

NAIP also provides a contracting vehicle with built-in program administration and project/product management to acquire statewide imagery through cost share partnerships. Cost share partners can also “buy up” to acquire enhanced deliverables through the existing NAIP contract.

These components combine to make a program that has not only withstood the test of time, but improves each year in technology, product and price. Many states would likely not have a statewide ortho imagery base without the NAIP program.

NAIP imagery is an example of how an historically consistent imagery product can be used for much more than supporting America’s agriculture, and provides us with an excellent example of the “Build-once, Use many-times” model at work. Many other applications leverage NAIP imagery, such as disaster preparedness and response, to general mapping activities in support of government coordination and planning, to commercial uses for real estate, construction and development.
Figure 1: 2012 NAIP Coverage. (Source: US Department of Agriculture, 2012)
Summary of Best Practices
Some of the best practices that distinguish the NAIP program are:

- Nationwide availability and consistent imagery products
- Ongoing / repeatable program providing new and historic imagery
- Imagery data may be downloaded for free or copies purchased
- Project technology, products, pricing, and buy-up options improve over time
- Built-in program administration, project management, product quality control, and data distribution
- Provides a contracting vehicle for statewide imagery acquisition and product buy-ups through cost share partnerships.

The National Broadband Map
It is well understood that access to high speed broadband has significant social and economic implications. For example, a 10% increase in broadband access means a 1.2 to 1.5 point increase in the United States GDP, according to Federal Communications Commission Chair Julius Genachowski. Chairman Genachowski went on to say, “We believe that broadband is a critical
infrastructure challenge of our generation. It is to us what railroads, electricity, highways, and telephones were to previous generations.” (Gardner, 2009). Understanding where no broadband service, or slow broadband service, exists is the first step to improving access for citizens. However, until the National Broadband Map was first published on February 17, 2011, there was no reliable and current nationwide picture of broadband availability with which planners could work toward making improvements. In fact, very few states had created such maps.

Program Description

In July 2009, the National Telecommunications and Information Administration issued a Notice of Funding Availability (NOFA) in support of a State Broadband Data and Development Grant Program. This effort supported the creation and operation of mapping programs within each state (and U.S. territory) to produce broadband service area maps. The NOFA included a detailed specification that described the deliverable but did not dictate the process which produced the data, thereby, giving discretion to each state to create a process that best fits their unique environment.

Beginning on October 14, 2009, NTIA awarded a total of $293 million to 56 grantees, one each from the 50 states, 5 territories, and the District of Columbia, or their designees. From the National Broadband Map website, “Grantees are using this funding to support the efficient and creative use of broadband technology to better compete in the digital economy. These state-created efforts vary depending on local needs but include programs to assist small businesses and community institutions in using technology more effectively, research to investigate barriers to broadband adoption, innovative applications that increase access to government services and information, and state and local task forces to expand broadband access and adoption.” (National Telecommunications and Information Administration).

This all means that for less than $300 million over a period of approximately 16 months, a project that involved all states and territories was launched that successfully created a complex nationwide geospatial dataset that met a specific set of common project specifications! In actuality, the initial cost is much less than $300 million, given that the grantees are using more than 50 percent of the grant funds to gather data twice a year for five years on the availability, speed, and location of broadband services, as well as the broadband services that community institutions, such as schools, libraries and hospitals, use. (National Telecommunications and Information Administration). The result is the National Broadband Map (NBM): a searchable and interactive website that allows users to view broadband availability across every neighborhood in the United States. In addition, many states published their own statewide broadband map.

As noted on the National Broadband Map web page, “The SBI (State Broadband Initiative) data is an ongoing, collaborative data collection, review and revision process that involves the combined efforts of local, state and Federal governments, broadband providers, private contractors, community anchor and academic institutions, and many community members across
the country. Broadband providers voluntarily provided a majority of the data.” (National Telecommunications and Information Administration).

Summary of Best Practices
Using this approach as a model, it is easy to envision a National Map of FGDC framework data layers, created from state and territorial data contributions that is continually improved over time.

- At the Federal level, the NTIA created an “end target” but gave each state the discretion to create a project process that best took advantage of the local environment.
- Data was collected from local data stewards, such as the local broadband service providers, aggregated to meet a standard specification, and “rolled-up” to a national map.
- The results were widely distributed via the National Broadband Map and web maps published by the states.

The Indiana Data Sharing Initiative
In the summer of 2008, a letter from the Indiana Geographic Information Office and the Indiana Geographic Information Council was sent to all Indiana county commissioners to invite Indiana counties to voluntarily increase the value of the IndianaMap by contributing a minimum amount of local spatial information about land parcels, local road centerlines, point addresses, and administrative boundaries – datasets that are, appropriately, created and maintained by county governments. (The Indiana Geographic Information Council). By and large, these layers existed county-by-county, but not as a comprehensive, standardized, and unified statewide data layer. The goal of the initiative was to create an integrated statewide data layer for each of these four datasets using an open source Web Feature Service as the transfer technology. To date, 87 of 92 counties have elected to share their data. The remaining counties are not participating due to existing local government policy or regulations.

This technology, and the processing, storage, and distribution infrastructure shown in Figure 3, allows periodic automated transfers that ensure the resulting IndianaMap information is reasonably current.
The benefits resulting from county participation are numerous and significant. Many of the issues that challenge Hoosiers do not stop at county boundaries—water and air quality, public safety, economic development, flood and other disaster planning and response, natural resource management, transportation planning, etc. These can all be better understood within the context of regional or statewide information. In fact, a recent study showed that of the $1.7 billion in projects supported by the IndianaMap, a full 75% were regional or statewide projects. (Jill Saligoe-Simmel, 2008).

One of the biggest challenges over the years has been the creation of a viable, sustainable technical data collection, storage, and distribution infrastructure and the human resources to manage and maintain it. Thanks to the collaborative efforts of over a dozen government, university, and private sector organizations, this infrastructure was put in place and ensures that up-to-date copies of the data can be periodically extracted from participants, moved through a "translation" process to homogenize the many different data standards that exist in the counties (rather than request that the counties modify their data to a state standard), and then provided to the IndianaMap. The resulting integrated product is made available to collaborators, including local government participants, the Indiana State Library, the Indiana Business Research Center, state government agencies, and the public via the IndianaMap.

While it is significant that the Data Sharing Initiative resulted in the production and distribution of four critical geospatial data layers that had never before been available as statewide data sets, the value is really in the use of the data rather than the data itself. As R.W. Greene pointed out in

Figure 3: IndianaMap Integration & Distribution Schematic

The benefits resulting from county participation are numerous and significant. Many of the issues that challenge Hoosiers do not stop at county boundaries—water and air quality, public safety, economic development, flood and other disaster planning and response, natural resource management, transportation planning, etc. These can all be better understood within the context of regional or statewide information. In fact, a recent study showed that of the $1.7 billion in projects supported by the IndianaMap, a full 75% were regional or statewide projects. (Jill Saligoe-Simmel, 2008).

One of the biggest challenges over the years has been the creation of a viable, sustainable technical data collection, storage, and distribution infrastructure and the human resources to manage and maintain it. Thanks to the collaborative efforts of over a dozen government, university, and private sector organizations, this infrastructure was put in place and ensures that up-to-date copies of the data can be periodically extracted from participants, moved through a "translation" process to homogenize the many different data standards that exist in the counties (rather than request that the counties modify their data to a state standard), and then provided to the IndianaMap. The resulting integrated product is made available to collaborators, including local government participants, the Indiana State Library, the Indiana Business Research Center, state government agencies, and the public via the IndianaMap.

While it is significant that the Data Sharing Initiative resulted in the production and distribution of four critical geospatial data layers that had never before been available as statewide data sets, the value is really in the use of the data rather than the data itself. As R.W. Greene pointed out in
GIS in Public Policy, “Realization is growing that almost everything that happens in a public policy context also happens in a geographic one: transportation planners, water resources studies, education subcommittees, redistricting boards, planning commissions, and crime task forces all must consider questions of where along with the usual ones of how, and why, and how much will it cost. GIS, by answering the first question, helps to answer the others.” (Greene, 2000). These four data sets, along with orthophotography and transportation data, form the foundation of geospatial context in support of informed governmental decisions. Nearly every “where” question that can be asked within a public policy framework or that must be answered in day-to-day governmental operations, must consider one or more of these data sets.

For example, the response to large natural disasters, like the large scale flooding that occurred across 82 Indiana counties in 2008, often takes coordinated response from local officials, responders, volunteers, Indiana National Guard, local and State Police, Federal agencies, the Red Cross, Animal Rescue, and many more - and that response requires coordinated data. The true value of the statewide data sharing initiative was again revealed when Clark County needed to respond quickly to the March 2012 tornados that devastated parts of southern Indiana. “We wanted to be able to quickly produce field maps and other geospatial data products to help our community, the Indiana Department of Homeland Security, and FEMA understand and best respond to the rapidly changing situation in our county,” said Vicky Kent Haire, Clark County Assessor. “Having accurate land parcels, road centerlines, and other data already integrated in statewide data layers before the event saved a lot of time in a situation in which every minute was critical.” (Haire, 2012).

Data layers, along with other geographic information (www.IndianaMap.org) have been shown to effectively lower the cost of doing business in Indiana. We know that the Data Sharing Initiative and the IndianaMap has supported over 1.7 billion dollars of projects across the state. For example, according to the survey responses which were collected as part of the 2008 IndianaMap ROI study:

- Spencer County used the IndianaMap to secure $2.5 million in grant funds to construct a Public Safety Building.
- The Perry County Port Authority used the IndianaMap to secure a grant for a $7 million dollar railroad improvement, which encouraged $81 million in private investment.
- Huntingburg, Indiana, used the IndianaMap to seek a $1.3 million grant to improve their wastewater treatment plant.
- Indiana 15 Regional Planning Council used the IndianaMap to secure funds to identify and assess Brownfield sites for reuse.

Data Sharing Initiative partners included: Indiana Counties; Coalition of Universities for Spatial Information Sciences (CUSIS); Indiana Department of Homeland Security (DHS); Indiana Department of Local Government Finance (DLGF); Indiana Department of Transportation (INDOT); Indiana Geographic Information Council (IGIC); Indiana Geological Survey (IGS);
Indiana GIS Center of Excellence (CoE); Indiana University Purdue University Indianapolis, The Polis Center; Indiana University, University Information Technology Services (UITS) and Indiana Business Research Center (IBRC); IndianaView Consortium; State Data Center, Indiana State Library; and the United States Geological Survey (USGS). (Sparks, 2012).

In summary, the IndianaMap provides public access to view, query, and download more than 230 layers of GIS data. (Indiana Geological Survey). The available data includes aerial photographs and geospatial data layers related to infrastructure, demography, environment, hydrology and geology. Through the Data Sharing Initiative, four new critical statewide data sets have been added: land parcels, address points, road centerlines, and local administrative boundaries. Together these data are benefitting Indiana government, businesses, and universities. In addition, these data are available to be integrated into a National Map, and will provide a solid foundation for all future location-based efforts at a state and national level.

Summary of Best Practices

- The initiative leverages the highly accurate and up-to-date information that is maintained locally and “rolls up” that data to the state level. This data then becomes available to Federal agencies.
- The State of Indiana designed a non-invasive architecture that does not require the counties to change their data or business practices for this initiative. Instead the State uses Safe Software FME (Feature Manipulation Engine) to ETL “homogenize” the data after it is received.
- The State provided financial remuneration ($15,000 initially with an additional $6,000 that followed) to help counties to defray the cost of adding and maintaining the WFS service (with money little left over for other GIS uses).
- Having all the information freely available on the IndianaMap makes these data very accessible to a wide audience, and “the more the data gets used, the greater the return on the investment.”

National States Geographic Information Council (NSGIC) – “For the Nation” Initiatives

From the 2012 NSGIC Advocacy Agenda: NSGIC believes that our Nation needs common geospatial data that are useful to all levels of government and others. Creating separate data for each level of government is wasteful. Since 2005, NSGIC has promoted its “For the Nation” initiatives, starting with Imagery for the Nation (IFTN). These initiatives must be built through consensus by all stakeholders to meet their collective business needs. Several states have begun to manage such programs with their local government partners. (National States Geographic Information Council (NSGIC), 2012).

Program Description

The NSGIC proposal is for National data layers to be built by aggregating local data into statewide files that are provided to the Federal government, or through large area contracting efforts managed by state and Federal agencies to provide better products and save money. Over
the years, NSGIC has promoted this model for key geospatial framework data layers including Imagery, Transportation, Addresses, Parcels, and Elevation data.

Program Best Practices
This advocacy and the dialog continue today, but we are seeing Federal led initiatives move toward a national transportation, imagery, address, and elevation data solution. These best practices include:

Transportation for the Nation (TFTN): The NSGIC vision for TFTN is to begin with developing consistent, current, high quality road centerline data for the entire country. The initial focus of TFTN is to produce a single authoritative, accurate road centerline dataset that includes all types of roads, both public and private, nationwide. Building off this model, the US Department of Transportation, Geospatial Information Officer published a strategic plan for TFTN in 2011, and the FY2013 Federal Budget includes initial funding for each state to develop and roll-up a local road centerline network of their jurisdiction.

Imagery for the Nation (IFTN): This initiative was first proposed in 2005 as a partnership between Federal, state and local governments. The concept clearly demonstrated that costs could be shared and significantly reduced by creating products over large areas to reduce contracting costs. Although the National Agriculture Imagery Program (NAIP) incorporated most of the basic features of IFTN and is invaluable to many states, the entire initiative may be difficult to fund in this economy. A comprehensive contracting solution based on the Western States Contracting Alliance (WSCA) Public Cloud Hosting Services model is being planned by NSGIC for the states and their partners.

Addresses for the Nation (AFTN): The US Census Bureau, The US Postal Service, The National Telecommunications Information Agency, The Department of Homeland Security (Enhanced 911), to name a few, all need accurate point address data to support their missions. Expand this list to include all of the local government, state government, and regional government organizations that either create, maintain or use address data and we have a large community that today, either through legal or policy restrictions, are not sharing or collaborating on address data development and maintenance. NSGIC keeps this topic front and center, and as a result the Census Bureau is currently conducting five pilot projects to better understand and test options for a workable local -> state -> Federal roll-up model of address data.

The 3D Elevation Program (3DEP) program: The emerging 3DEP program initiative is being led by the United States Geological Survey (USGS) with other Federal partners, and is based on the results of their National Enhanced Elevation Assessment (NEEA) survey. (USGS, 2012). The NEEA is a comprehensive national survey that documented business uses for elevation data across 34 Federal agencies, from all 50 States, selected local government and tribal offices, and private and not-for-profit organizations. For Alaska, predominantly Interferometric Synthetic Aperture Radar (IfSAR) technology is being used to capture elevation data, and for the rest of
the country Light Detection and Ranging (LiDAR) technology will be used for elevations. The LiDAR data will be acquired over an 8-year period to address 58 percent of the benefits identified in the NEEA; with a potential return on investment (ROI) for this data of $13 billion annually from an approximate $140 million annual investment in the program.

Summary of Best Practices
Best practices that distinguish these “For the Nation” initiatives are:

- TFTN roll-up of local information to create a national coverage.
- TFTN bottom-up Federal funding of States to develop their local road centerline network.
- AFTN – Federal, State, Local partnership to understand the needs and best practices for development and maintenance of addresses.
- AFTN – Pilot project to develop and test best practices.
- 3DEP – Conducting a thorough nationwide elevation data survey and assessment.
- 3DEP – Federal to State to Local cost sharing model.

USGS Liaison Program
Program Description
The United States Geological Survey (USGS) Geospatial Liaison Network consists of individuals housed in National Spatial Data Infrastructure (NSDI) Partnership Offices across the nation. These liaisons and offices perform numerous functions in support of the NSDI, The National Map and Geospatial One Stop. (Survey, 2012).

Program Best Practices
USGS Geospatial Liaisons serve a critical role by helping to facilitate collaboration between tribal, Federal, state, and local governments as well as with not-for-profit organizations, the private sector, universities, and consortia.

Where coordinating entities such as GIS councils do not exist, Liaisons both encourage and help to facilitate their development. When they do exist, the Liaisons ensure that they are aware of Federal initiatives that may have a strategic and/or financial impact on related tribal, state, or local objectives.

Liaisons also serve a critical role by ensuring that the USGS, as well as other Federal partners, are aware of tribal, Federal, state, and local activities. This can help reduce duplication of effort and it may spur new Federal initiatives or allow for the enhancement of existing initiatives that can leverage the investments in data and tool development made at other levels of government.

While the activities of USGS Liaisons are important in many ways, one area in which the value of the Liaison role is particularly evident is in disaster management. Efficient disaster management demands awareness and effective use of geospatial resources. Knowledge of these resources across all levels of government can have a significant impact on the ultimate toll that a disaster takes in terms of losses to life and property.
Summary of Best Practices
Best practices that distinguish the USGS Geospatial Liaison Network program are:

- Facilitate communication and collaboration between Federal, State and Local partners
- Facilitate local access to Federal funds and programs to support local geospatial initiatives
- Facilitate local access to Federal geospatial resources during disasters

The Homeland Infrastructure Foundation-Level Data (HIFLD)
As a direct result of the attacks on America on September 11, 2001, our nation’s emergency management community gained a greater appreciation for the need for readily available, nationwide, accurate geospatial information about our nation’s critical infrastructure. As a result HIFLD was created.

Program Description
HIFLD was established in 2002 to address improvements in the collection, processing, sharing, visualization, analysis, and protection of critical infrastructure geospatial information across multiple levels of government. The main components of HIFLD are the Working Group (HIFLD-WG), HIFLD to the Regions (HTTR), and the Homeland Security Infrastructure Program (HSIP) Gold and Freedom GIS databases.

HIFLD-WG: Working Group members represent every segment of the Federal Government, the States are represented by NSGIC, Federally-funded Research and Development centers, and Private Industry partners. The Working Group meets on a bi-monthly basis to advance the HIFLD mission and to focus on geospatial information in support of 18 different national, state, and defense level Critical Infrastructure Key Resource Sectors.

HIFLD to the Regions (HTTR): HTTR staff help focus HIFLD support on state and local priorities and issues to increase and enhance regional activities and to strengthen Federal, state, local, and private sector partnerships.

HSIP Gold & Freedom: A main focus of HIFLD is to provide the best available, national-level, current and authoritative geospatial data possible. The HSIP Gold database is a compilation of almost 500 layers of geospatially enabled infrastructure data sets addressing all 18 HIFLD Critical Infrastructure Key Resource Sectors. HSIP Gold contains both secure and licensed geospatial data to provide a common operating picture and baseline data for all HIFLD-WG Federal members. HSIP Freedom is a license-free subset of HSIP Gold available to Federal, state, local, tribal, and private sector contractors supporting emergency response and homeland security activities.

Program Best Practices
HIFLD best practices are demonstrated at each regular scheduled face-to-face meeting and focus session held by the Working Group. By focusing on a specific sector, the attending members are
provided with a valuable cross-sector education, new networking opportunities, and a creative problem-solving environment.

Additionally, the program and funding commitment by the four primary managing Federal partners: The Department of Defense, the Department of Homeland Security, the National Geospatial Intelligence Agency, and the United States Geological Survey are key. These partners recognize that their individual agencies have the vision but not the staff, technology or data resources to adequately accomplish this program. But they do have the financial resources to contract and direct HIFLD staffing to provide the day-to-day program support by engaging the private sector. Plus, they are establishing partnerships and contracts with the leading commercial geospatial data and technology providers to help develop high quality and consistent geospatial resources necessary to complete their mission.

Summary of Best Practices
Best practices that distinguish the HIFLD are:

- Federal partners’ leadership and funding model
- Private sector staffing for day-to-day support and advancement of the program
- Regularly scheduled face-to-face meetings and focus sessions
- Member cross-sector education and networking opportunities
- Connection to state and local governments through HIFLD to the Regions

Indiana Silver Jackets: “Many Agencies, One Solution”
Coordination and collaboration are the foundation for successful data sharing. The Indiana Silver Jackets, along with similar organizations in other states, provide a best practice example of how multiple agencies can work across organizational boundaries toward a common objective.

Indiana Silver Jackets (ISJ) started in 2006 as a voluntary inter-agency team initially to address natural hazard mitigation related to flooding, the nation’s most impactful natural hazard. This effort grew out of the National Response Plan which was issued in December 2004 by the U.S. Department of Homeland Security to promote collaboration between Federal, State, local, and tribal agencies along with non-governmental, private-sector, and emergency management organizations to prepare for, respond to, and recover from major disasters. Now the ISJ team is able to bring staff from Federal, State, regional agencies, and universities together to serve the citizens of Indiana by focusing on collaborative risk management solutions including, but not limited to, flooding.

With a shared vision to “be a catalyst in developing comprehensive and sustainable solutions to natural hazard issues, seeking to protect life, property, and resources” the member agencies of the Indiana Silver Jackets include:

- Federal Emergency Management Agency
- Indiana Department of Homeland Security
The member agencies are able to find common ground by focusing their efforts on common objectives that include enabling the effective and efficient sharing of information, fostering the leveraging of available agency resources, providing improved service to its customers, and promoting wise stewardship of the taxpayers’ investment. (Smith, Johnson, Morlock, Weidel, Renkenberger, & Ritz, 2010) As a result, the ISJ has undertaken several initiatives, some of which are completed and some of which are ongoing. Initiatives are developed through consensus in answer to Statewide or regional problems related to natural hazards. Accomplishments of the ISJ team include the following Indiana projects and efforts:

- Inundation Pilot Project (Ravenswood Area of Indianapolis)
- Orange County Flood Study and Flood Warning System
- North Branch Elkhart River West Lakes Report
- Update to the State Hazard Mitigation Plan
- Education outreach efforts to children
- Response to 2008 Floods
- Enhanced relationships between federal and state agencies (Brummett, 2010)

Importantly, the role of ISJ is not funding projects. In fact, ISJ provides limited funding, preferring instead, to match project leaders with compatible funders. (Brummett, 2010)

Summary of Best Practices
The Indiana Silver Jackets along with similar agencies in other states demonstrate several best practices.

- The ISJ team is comprised of multiple agencies that include all levels of government as well as the private sector and higher education.
The vision and objectives of the ISJ are expansive enough to ensure common ground among a broad range of interests, but are focused enough to generate practical solutions. The ISJ team does not attempt to fund all projects, but actively seeks to match projects with funding sources.

WSCA Public Cloud Hosting Services
The Western States Contracting Alliance (WSCA) in collaboration with the National Association of State Procurement Officials (NASPO) provides a variety of cooperative multi-state contracts for the cost-effective and efficient acquisition of quality products and services for participating states to take advantage of through an aggregated purchasing model.

A lead-state is used to manage these multi-state and multi-vendor contracts, and all governmental entities within WSCA states, as well as approved governmental entities in non-WSCA states, can use the approved agreements.

![Map of States Participating in WSCA](image)

Figure 4: States participating in the Western States Contracting Alliance.

Program Description
Through a National States Geographic Information Council (NSGIC) initiative led by a consortium of four WSCA member states, Utah, Colorado, Montana, and Oregon, their state Chief Information Officers (CIO) established a “Public Cloud Hosting Services” contract to enable their states to move their GIS data to the Cloud. As a result, four contractors, Dell, Dewberry, Esri and Unisys were selected to provide these Infrastructure and Software as a Service cloud offerings. (National Association of State Procurement Officials (NASPO), 2012).

Program Best Practices
Once Participating Addendums have been executed between each state and one or more contractors, that state’s CIO becomes the manager of those individual cloud activities. Each state is treated as an Individual Customer but with access to all the standard products and services under the multi-state agreement.

Summary of Best Practices
Although this is a very new program, some key best practices that distinguish the WSCA Public Cloud Hosting Services are:

- Helps states achieve cost-effective and efficient acquisition of quality products and services.
A lead-state is used to manage all cooperative multi-state contracts under that program.
Cooperative purchasing benefits states as well as Federal Agencies, Cities, Counties, and educational institutions.
Allows each state to focus more on geospatial data development, sharing and applications, and not the IT or GIS infrastructure.
Helps establish a template for the NSGIC “For the Nation” (FTN) geospatial data initiatives.

Geospatial Platforms

Program Description
This best practice does not focus on a single Federal, State or Local Government program, but identifies both established and emerging geospatial technology and standards being used to develop programs generally identified as Geospatial Platforms. The concepts and technologies behind “Platforms” does not come from the GIS industry, but exists today in the cloud developments activities of Amazon, Microsoft, Google, Apple, Facebook and others. The Geospatial industry is a relative newcomer to the platform concept, but it fits well because of geospatial industry focus on integration, communication, and collaboration.

According to “The Age of the Platform” by Phil Simon, “A platform is an extremely valuable and powerful ecosystem that quickly and easily scales, morphs, and incorporates new features, … users, customers, vendors, and partners…. The most powerful platforms today have two things in common:

- They are rooted in equally powerful technologies—and their intelligent usage.
- They benefit tremendously from vibrant ecosystems (partners, developers, users, customers, and communities).

Platforms are all about communication: They help people connect with each other, businesses communicate with customers, and governments stay in touch with their citizens.” (Simon, 2013)

The emerging Geospatial Platforms we see today support cross-government data sharing and data management by supporting complementary and open technologies. The leading technology companies behind the emerging Geospatial Platforms include the 800 pound Gorillas of the Internet Cloud - Google, Bing and Amazon; in the Geospatial Market space – Esri; and through enabling open geospatial standards - the Open Geospatial Consortium (OGC).

Program Best Practices
To look at these best practices we have identified a number of ongoing and emerging initiatives across different levels of government and industry to highlight best practices in the standards, business and technology layers of the Platform:
Virtual Alabama - https://virtual.alabama.gov/
Virtual Alabama uses an enterprise Google Earth database to manage and visualize detailed geospatial map layers through a user-friendly 3D globe interface. The Google Earth database transforms massive amounts of geospatial data into useful information for technical and non-technical users through a geospatial Common Operating Picture (COP). The State’s Enterprise GIS (Esri) remains hidden behind the scene and feeds the Google Earth database and COP. The Virtual Alabama COP serves as a Platform for a wide user base of state and local officials at various levels of technological proficiency. The Virtual Alabama platform uses role-based access defined for each end user to allow access and integration of both public and proprietary data securely across the internet.

- Virtual Alabama, in just one implementation, provides the COP and situational awareness needed by Alabama’s first responders to protect lives and safeguard citizens before, during, and after a disaster.
- Virtual Alabama, as an information tool, reduces technology gaps in economically challenged areas and levels the information “playing field’ throughout the state.
- Virtual Alabama, as the realization of ubiquitous access to geospatial data and information across Alabama has over 36,000 users representing over 3000 agencies.

Esri - http://www.arcgis.com
The Arcgis.com Platform is a powerful example of how cloud-based geospatial data and geoprocessing technologies are being scaled to enable ubiquitous access to geospatial applications from virtually any connected device. Through ArcGIS.com, GIS is finally and justifiably becoming the foundation of an ever-expanding universe of platforms that exist outside of the traditional geospatial market, but rely on and leverage location information as a critical component to support their applications. The ArcGIS.com Platform is also finally closing the loop between the existing Enterprise GIS systems managed and maintained by GIS professionals by geo-enabling their much larger organization staff members and many others outside the walls of their organization.

The Author’s see these emerging Geospatial Platforms between all levels of government (Local <-> State <-> Federal) enabling geospatial data integration, communication, and collaboration. A few specific examples of the emergence of the Arcgis.com Geospatial Platform in the Local, State and Federal government space are:

Local Government Platform - http://www.esri.com/industries/localgov/ Esri’s Local Government platform provides a FREE set of design and data templates along with geoprocessing tools and applications to benefit local governments from Cities, Towns, Counties, and other civil divisions. These resources can be used to support both the Enterprise GIS (back-office) activities as well as cloud-based ArcGIS.com applications. The various templates provided have been carefully vetted against multiple industry standards and thereby provide an easier path to share, migrate, and roll-up these local
data to support other uses and uses. As one example, a single local point address database implemented correctly can support Local public works, elections, and E911 applications; as well as support State geocoding and transportation needs; while also supporting Federal Census Bureau and Postal Service uses.

State Government Platform – http://www.esri.com/industries/stategov Esri’s State Government platform will advance the existing Esri Platform by providing new technology tools to facilitate the roll-up, maintenance and stewardship in a common platform for data sharing, to enhances workflow, decision making, and coordination. Although still in development, the Author’s see this Platform as an important technology component in a Local <-> State <-> Federal geospatial data sharing model.

Federal Geospatial Platform 2.0 - http://www.geoplatform.gov Version 2.0 of the Office of Management and Budget (OMB) Geospatial Platform is based on ArcGIS.com and OGC Open Standards to enable Federal Agencies responsible for specific Circular A-16 (The White House) geospatial data themes to publish, control user access, and manage the lifecycle of their geospatial data themes. Each A-16 steward will be able to avoid duplicative and redundant efforts and spending by creating communities of partners for each Platform to share their data, responsibility and resources.

Although still in development, the Geospatial Platform 2.0 has the potential to allow all partners to openly share in the development, maintenance and use of these data. One example of this is illustrated by the US Census Bureau – Community Tiger Platform pilot project described below.

US Census Bureau – Community TIGER Platform - Historically the Census Bureau developed and maintained their TIGER/Line data layers internally. TIGER data layers include street centerlines, address information, jurisdictional boundaries, and more. The Census Bureau only collaborated on TIGER/Line development and maintenance with other Federal, State and Local governments in a limited one-way and highly restricted relationship that prohibited the resulting data from being shared.

The Community TIGER Platform currently under development is a collaborative effort between the US Census Bureau and Esri to standardize address and spatial data harvesting processes, as well as providing a one-stop Common Operating Picture (COP) for Census Bureau, Federal, State and Local government partners to share and improve their geospatial data layers in common with TIGER. The Community TIGER Platform uses the COP and new data development and maintenance policies to implement a new bottom-up (Local -> State -> Federal data roll-up) approach for stewardship of these data.

Although still in development, the Community TIGER Platform has the potential to allow all partners to openly share in the development, maintenance and use of these data, while
also demonstrating the hi-tech realization of the time-honored axiom “Local data is the best data.”

Summary of Best Practices

Best practices that distinguish Geospatial Platforms are:

- Geospatial Platforms can provide ubiquitous access to geospatial data and information, and be the hi-tech realization of the time-honored axiom “Local data is the best data.”
- Support both established open standards and commonly-used industry standards to create an open and flexible platform.
- Establish and leverage a web-based Geospatial Common Operating Picture (COP) for each community of users to support specific applications and leverage shared data and platform technology.
- Effective sharing of geospatial data through OGC Services and Role-based Access to support communication and collaboration between Federal, State and Local partners.

What does not work

There are a number of impediments to realizing the benefits that geospatial technologies can bring to communities. We wish to highlight three in particular:

1. The perception on the part of some local governments that it is appropriate and useful for communities to charge fees for GIS data
2. State laws that are difficult to interpret or that directly suggest that GIS data are not public records
3. Redundant data collection efforts.

With regard to the first item – the perception that GIS data should be sold by communities to generate income - we recognize that communities do and should seek creative solutions for financing those things for which they are responsible to include public safety, infrastructure maintenance, and an array of other critical government services. However, we argue that selling GIS data to fund these types of services is counterproductive. As noted earlier in this paper, returns on investment studies have made a convincing argument that data has more value when it is freely distributed and utilized. Communities that sell GIS data restrict the potential applications of their GIS data by only making it available to those that can afford its purchase.

The second impediment relates to, but also extends beyond, the issue of selling data. The Freedom of Information Act (FOIA) ensures public access to U.S. government records. However, this only applies to Federal agencies. Each state has its own public access laws which vary significantly from state to state. Unfortunately, these laws are not always clear on the question of whether GIS records are public records – which would typically make them available at minimal to no cost upon request. In some cases these laws directly deny the classification of GIS data as public records, thus allowing communities to charge for their GIS data at a rate of
their choosing. As a result, lawsuits have been filed in recent years that ask questions such as ‘Are GIS data public records?’ ‘Can a government agency charge for GIS data?’ and ‘Can a government agency copyright, license, or restrict downstream use of GIS data?’

Decisions in these court cases have been inconsistent. Some of the more notable examples include a 2008 case in which the key issue was whether the Village of Sussex, Wisconsin could avoid liability under open record laws by managing their data through an independent contractor. The independent contractor claimed copyright protection of its database. In this case, the court concluded that the Village of Sussex was responsible to provide the GIS data in compliance with open records laws and could not hide behind a contractor. (Wiredata Inc v. Village of Sussex, 2008). In 2008, Horry County, South Carolina argued the right to claim copyright for GIS data, charge a fee (royalty) for use of copyrighted data and restrict the downstream use of the GIS data. In this case, the court determined that Horry County could claim copyright and restrict the downstream use of the data. (Seago III v. Horry County, 2008). In yet another example, Santa Clara County, California used the Homeland Security Act to overturn a previous judicial decision by arguing that the Homeland Security Act protected the information from disclosure; the requested information was exempt from disclosure under the California Public Records Act “catch-all clause”; and that the County can place restrictions on disclosure under state law provisions recognizing its copyright interests, and it could demand fees in excess of reproduction costs. The court concluded that the submitter of data to the Federal government was not protected by the Homeland Security Act, that Santa Clara County could not prove that in withholding the GIS data the public interest was better served and that California law provided for copyright for software and not for public records – in other words that data could not be copyrighted nor could a fee be charged greater than the cost of reproduction. (County of Santa Clara v. Superior Court, 2009). The battle for the rights of local governments to restrict data access to GIS data in California continues to the current time in a case now before the California Supreme Court that is set to determine whether Orange County’s computer database of public land records is exempt from disclosure under the Public Records Act. (Orange County Superior Court v. Sierra Club, Current).

As already argued, the best GIS data is local data – typically generated at the county level – and the inconsistent access to information due to the wide range of restrictions imposed by public records laws at the state level is a significant challenge that must be overcome in order to make this high quality data accessible in a consistent fashion.

The final impediment concerns the continuing issue of redundant GIS data development. In the early days of modern GIS it was not uncommon for multiple government agencies to collect similar – if not identical – GIS data. This problem, while not as severe as it once was, still persists today. Redundant GIS data development activities sometimes occur between Federal agencies, states and counties. This can happen for many reasons but among the most common are the lack of awareness about different data collection activities between organizations resulting from inefficient communication protocols and the lack of infrastructure – both political
and technical – that encourages collaboration on the development and management of GIS data. Fortunately, as already noted, there are efforts underway to address these issues, including the USGS Geospatial Liaison network and various GIS consortia. As a result of these efforts, best practices such as those noted earlier in this paper are now emerging that reveal efficient ways to share in the collection of GIS data such as aerial photography, transportation infrastructure, and other resources of mutual interest.

PROPOSED NATIONAL MODEL

Many of the best practices presented here can be applied to a new national model for sharing geospatial data. In particular, the best practices can inform how appropriate roles at each level of government can facilitate the sharing of geospatial data. Federal agencies can provide direction, leadership, and most importantly partnership funding. This is the Federal role for the National Broadband Mapping project. The FCC and NTIA responded to a need for better geospatial data in order to understand where high speed broadband was available, and where it was not available. These agencies produced a detailed description of a broadband geospatial data product that located service areas, service speed, type of technology used, and service provider name. Project funding to the states was provided via a Federal grant. The data that was created was made available by way of a National Broadband Map.

An appropriate role for state government is one of coordination and integration. Continuing the broadband mapping example, states and territories, as grantees, coordinated with local broadband service providers, collected and integrated that data to a common standard, and made this data available to NTIA.

Indiana played a similar role in the data sharing project by working with counties to collect and integrate land parcels, address points, road centerlines, and local administrative boundaries. These four data sets, once collected and integrated as statewide data layers, have been made available to Federal agencies and the public. The Western States Contracting Alliance (WSCA) cooperative multi-state contracting model is an excellent example for the efficient acquisition of GIS infrastructure. A similar model can also be applied to the acquisition of regional or statewide orthophotography and LiDAR products and services with a state serving as the contracting agency.

Local data stewards from municipalities and counties create and maintain rich, detailed, and accurate data that describe their local environment. This role is appropriate. These stewards are the experts with regard to their land parcels, point addresses, road systems, surface waters, natural resources, etc. and create these data to support their communities.

The National States Geographic Information Council (NSGIC) also has a role in helping to liaison between state and Federal agencies to create geospatial standards and policies, as it did.
when it created the database structure for the broadband mapping project and as it worked with
the FGDC to develop data standards.

These Federal, state and local roles can facilitate two different approaches to national data
sharing models: buy-up and roll-up.

The Buy-Up Data Sharing Model

The NAIP program provides a good example of how Federal and state governments can
coordinate and cooperate. The USDA – FSA determined a minimum specification for an
orthophotography product acquired to study agriculture, and funded a program to deliver that
base product. Importantly, the USDA – FSA decided to allow states to add funds to increase the
resolution of the imagery to better suit the needs of the state. From the Federal perspective, such
a buy-up adds value to the resulting data. From the state perspective, a valuable data set was
obtained at a discounted cost.

States often follow this model by building into their orthophotography projects the possibility of
counties and cities choosing to pay an additional – albeit discounted – fee in order to increase the
resolution of the photography for their area of interest.

The buy-up model requires a level of coordination sufficient for project and funding planning. In
return, project partners receive products at a discounted cost from what they would individually
pay.

The buy-up model is appropriate for projects that cover large geographic areas and in which new
data is produced as "one-time" data creation projects, such as those involving statewide
orthophotography and LiDAR.

The Roll-Up Data Sharing Model

The national broadband mapping program and the Indiana Data Sharing Initiative are examples
of how data can be created and maintained at the local level and then rolled-up to the state level
where standards are enforced and the resulting integrated data is made available to the Federal
government. It is easy to envision a national parcel map or a national address point map using
the roll-up model, especially if some portion of the Federal geospatial budget could be directed
to the local data stewards.

The roll-up data sharing model is appropriate for data sets, such as land parcels and address
points, that are incrementally developed by local stewards and are continuously updated and
improved over time.

7. **Steps for success**

Several steps that will be required for a national geospatial data sharing model are articulated in a
document titled "State Position on National Geospatial Data Policy". (NSGIC, September 10,
2012).
1. "Federal programs should be coordinated across Federal agencies." We add that this would best be accomplished by creating a Federal Geographic Information Office within OMB.

2. "Federal data collection activities should include cooperative options for state and local buy-ups."

3. "Federal agencies should notify states of any data collection activities in their area. States can then participate appropriately, possibly by curtailing redundant efforts or providing additional funds to enhance the Federal effort."

4. Federal agencies should notify states of pending grant and contract programs. The states can then notify local governments and help develop better proposals to meet national needs."

5. "Federal agencies and state governments should work together to develop a common understanding of program requirements and the data required to meet those needs."

6. "When appropriate, states should be allowed to help manage Federal grant/contract programs within their borders. This will provide states with a better understanding of the underlying data to produce positive long-term results."

The Authors of this paper additionally recommend that:

7. Recent years have witnessed the development by various organizations of guidelines and standards in support of geospatial data management activities and practices. Examples include the work of government entities such as the Federal Geographic Data Committee as well as professional organizations such as the Urban and Regional Information Systems Association (URISA). For the goals outlined in this paper to be achieved it will be necessary to ensure that a coordinated effort to create authoritative and open standardized data sharing guidelines is both pursued and promoted. We recommend development of a Model-Law template for the geospatial community to advance this effort. A similar approach developed by the Surveying Profession through the National Council of Examiners for Engineering and Surveying, for Survey Model-Law (NCEES - Model Law, 2012) along with detailed Model-Rules (NCEES - Model Rules, 2012) is recommended. A similar Model Law template for geospatial data would help federal, state and local governments:

- Update existing laws to reflect the reality of how geospatial technology, data and practitioners have become a critical part of the work of government.
- Document the authoritative roles and responsibilities for Geospatial Professionals and Practitioners creating and maintaining government geospatial data.
- Document authoritative government sources and stewards for their geospatial data layers.
• Provide consistent Public Records definitions for all types of geospatial data to insure sensitive and private information is secured while all public geospatial data is free and openly available to share and use with no restrictions.

8. An ongoing effort to educate both the geospatial community and those that they serve about the value of adopting data sharing guidelines and policies is vital. We believe that the most successful education strategy would be based upon a collaboration of the academic and professional communities. The academic community should integrate the instruction of effective geospatial data management practices into their curriculum in order to produce practitioners who are prepared to implement these practices in the organizations that they serve. The professional community, through organizations such as URISA, state level GIS councils and others should offer continuing education opportunities to the practitioner community in order to ensure that they are well informed about changes in technology, policies, and best practices. This community also needs to play a strategic role by educating policy makers and others who are in a position to influence data sharing processes about the value of investing in these areas.

9. Eight percent (8%) of the annual Federal geospatial budget should be redirected to city, county, and state data stewards to support ongoing maintenance of land parcels, address points, local administrative boundaries, road centerlines, orthoimagery, elevation and other critical local data. How much money does that represent? The truth is that the answer is not clear; however, based on a 1994 data survey conducted by the OMB, “more than $4 billion is spent annually by U.S. Federal agencies on the collection, management, and dissemination of geospatial data.” (Tosta, 1994) It is reasonable to believe that expenditures have increased since 1994 given the growth of the geospatial industry in the last decade. However, using the $4 billion dollar as a minimum reference point, this would amount to at least $6.4 million per state (if divided equally). That amount would come close to covering a full time GIS technician with enough left over to fund strategic statewide projects.

In other words, these redirected funds would enable local governments to continue to produce and maintain high quality data and reduce their need, actual or perceived, to “sell” or “license” their data in order to add dollars to their operations budget. This financial support would recognize the quality, quantity, and detail of local data and would correct the imbalance that currently exists between local funding and their rich data holding as shown in Figure 5. Moreover, as these local data are rolled up to state and Federal levels, state and national “maps” can be created using better data for lower costs.
Data Development should be dominantly completed by local entities. Funding to enable these activities should come in large part from the Federal government.

10. While we clearly advocate for the development of a national data sharing coordination strategy organized around a geospatial platform with supporting standards and best practices, we believe that it is vitally important to recognize that no single solution is likely to fit the needs of every organization. Therefore, a successful national data sharing strategy must be adaptable to local needs and circumstances. We are confident that a nationally applicable solution that meets local needs can be achieved.

CONCLUSION

This paper has reviewed the vital role that geospatial technologies and data play across Federal, State, and Local government. These entities have undertaken significant programs to collect, maintain, and distribute this geospatial information. Nevertheless, there remains a critical need for a national strategy that will encourage and support the development of these data. This paper has proposed key elements of such a strategy, based on a combination of best practices from current and past initiatives as well as a number of new ideas to leverage technological advancements and other resources. Successful implementation of this national strategy will meet the needs of all levels of government and those they serve by empowering them with the information necessary to address challenges and pursue opportunities at local, regional and national scales.
BIBLIOGRAPHY

County of Santa Clara v. Superior Court, No. H031658. (Court of Appeals, Sixth District, California, February 5, 2009).

Haire, V. K., 2012 June 4, Comments regarding the March 2, 2012 tornado that occurred in Clark County, Indiana.

Orange County Superior Court v. Sierra Club, Orange County Superior Court; 30-2009-00121878 (Supreme Court of California Current).

Seago III v. Horry County, No. 26505 (Supreme Court of South Carolina, June 16, 2008).

Sparks, J., GIS for Smarties (May 12, 2012) http://www.in.gov/gis/pres.htm

ABOUT THE AUTHORS

Jim Sparks

Jim has spent most of his career working with geospatial information. Jim has worked in county government, state government, higher education, and the private sector. In October 2007, Jim was appointed as Indiana’s first Geographic Information Officer with a mission to facilitate the development, maintenance, and distribution of comprehensive statewide geographic data. Jim has a B.A. in Business Administration and a M.S. in Management.

Philip Worrall

Phil is the Executive Director, Indiana Geographic Information Council (IGIC). IGIC is a 501c3 non-profit organization with a 30-member board of directors and general membership of over 300 GIS professionals. As Executive Director, Phil leads IGIC’s efforts in the statewide coordination of Indiana GIS through dissemination of data and data products, education and outreach, adoption of standards, building partnerships, and the IndianaMap. Phil has over 35 years of private industry experience working in the mapping sciences.

Kevin Mickey

Kevin is the Director of Geospatial Technologies Education at The Polis Center, an applied research center at Indiana University Purdue University Indianapolis (IUPUI). He is also an Adjunct Assistant Professor in the IUPUI School of Public and Environmental Affairs. He has a BA in Geography and a MPl Environmental Planning. Kevin currently serves as Secretary of the Multihazard Mitigation Council of the National Institute of Building Sciences Board of Direction. He also chairs the Professional Practices Division of the Urban and Regional Information Systems Association. He also served as a Board member of the Indiana Geographic Information Council (IGIC) from April 2007 to April 2013. He currently chairs the IGIC Education and Outreach Committee and has done so since 2000.
The Association for GIS Professionals

October 10, 2013

GIS Management Institute®
(GMI)

GMI Goal: The GIS Management Institute® helps organizations identify and implement enterprise GIS management practice improvements. GIS managers, anywhere in the world, will increase return on investment and maximize the effective use of GIS for their enterprise business goals with GMI products and services.

Need: GIS professionals and practitioners invest considerable time and money for their initial education and continual training, yet recognized professional practice standards and guidelines are lacking in the GIS profession. Public agencies and private entities have invested very large sums of money to develop and operate their enterprise GIS and program specific GIS operations, yet best-practices and investment validation for GIS operations are both lacking. Worldwide, most GIS managers, professionals, and practitioners continue to deliver value to society through the work that they do. But there remains a need for an environment where best practices and professional standards can be developed, validated, and promoted to maximize the value and effectiveness of GIS operations. These are the needs that the GIS Management Institute® will meet.

GMI Core Products and Services: The GIS Management Institute® already has two key products that are central to its core strategy:

- The Geospatial Management Competency Model (GMCM) for managers
- The GIS Capability Maturity Model (GISCMM) for GIS organizations

The GIS Management Body of Knowledge (GMBOK) will be a third key product of the GMI. The GMBOK is intended to be a GMI product that generates substantial revenue.

The GISCMM and the GMBOK will also be used to develop an on-line subscription based organizational assessment and accreditation service for enterprise GIS operations anywhere in the world. This will be the primary revenue generating GMI service. Subscribers to the service will populate the GMI database with metrics on their own GIS configuration, maturity assessment, and performance metrics. Their subscription will then provide them access to the GMI database to analyze the effectiveness of individual GIS management best practices and to compare their GIS operations against peer agencies worldwide.

The GISCMM, GMCM, and the GMBOK will also be used to develop a revenue-generating, subscription-based GIS educational program accreditation service. The GMCM and the GMBOK will be used in cooperation with GISCI, to develop a revenue generating GIS Management Certification Program.

GMI Core Strategy: The GMI core strategy is to help those who deploy, operate, and manage GIS organizations enhance their personal competency, and improve the effectiveness and ROI from their investment in GIS. The GMI will mobilize volunteer GIS professionals (to be called GMI Associates) to create the GMBOK, comprised of individual GIS Best Practices. The GMBOK will be developed by starting with frameworks that have already been developed by URISA, such as the GMCM and the GISCMM. Topics for individual GIS Management Best Practices will be developed from the 23 capability and 22 maturity components of the GISCMM. Each topic will include a narrative of the best practice, a policy template, recommended metrics, a description of required professional competencies to support the best practice, and recommended learning objectives to inform the development of a curriculum to teach the best practice.

The URISA GIS Management Institute® is recognized as the worldwide authority for GIS management best practices. The GMI accredits the maturity and capability of GIS operations and, by association, the professional competence of GIS managers; develops, maintains, and promotes the GIS management body of knowledge; accredits and provides GIS management-related education; and advocates for effective GIS management related policies and funding at the local, state, national, and international level.

For more information about the URISA GIS Management Institute, see: www.urisa.org/main/gis-management-institute/

© 2013 Urban and Regional Information Systems Association (URISA)