GIS-Pro 2011
By Geney Terry, GISP, MGIS, GIS-Pro 2011 Conference Chair

This year’s annual conference, GIS-Pro 2011, is fast approaching. While November sounds like it’s a long way off, there are less than 3 months to go. The conference will take place in Indianapolis, Indiana, November 1-4, 2011. Playing off the location, the conference is billed as an opportunity to be INSpired, INvigorated, INformed, and INvolved.

The Conference Committee has been hard at work, with the able assistance of the URISA staff, putting together a program that we believe will provide new learning opportunities and informative presentations that will get you up to date on the GIS profession and technology trends in the industry. In these tight budget times, everyone understands that serious choices need to be made when allocating precious training and travel dollars. Our goal for this conference has been to assemble a solid program that provides value in return for those dollars, making the expenditure easily justifiable.

For many years, the Annual Conference presented a fairly consistent set of program tracks. Track names like Data, Applications, and Tools may sound very familiar to quite a few of you. That started to change several years ago when we incorporated new tracks focusing on professional development and management, as well as education. We are now working hard to make sure that each and every year the conference program offers relevant tracks that are keeping up with the rapid changes in the GIS industry and profession. While you can still count on the familiar project presentations based on the work of your peers, we’re also working to incorporate more training and industry information that will prove beneficial to you in your workplace. This year’s tracks are titled:

• Roadmaps for GIS Professionals,
• The Business Benefits of GIS,
• Immersive GIS,
• GIS Speaks Out, and
• One Government.

These tracks cover professional development, tools to measure the success of GIS like ROI and maturity models, state of the art

continued on page 2
technologies, geospatial industry trends, sharing of leadership experience, and cross-jurisdictional collaboration. Several sessions will be conducted more like a training class and you will have information in your hands that you can take back to work and implement immediately.

One area of the GIS profession that the conference has not focused on extensively in the past is the developer community, both application and web. That's changing this year. We've included several sessions, both daytime breakout sessions and evening events, that will provide opportunities for developers to learn, collaborate, and network. These sessions cover industry standard software and open source applications.

As has been the standard over the years, there will be a day of URISA developed workshops. These will take place on Tuesday, November 1st. This year’s slate of workshops includes:

- **Business Intelligence and Data Integration for the GIS Professional,**
- **Applying Geospatial Standards in the Workplace,**
- **3D Geospatial: Project Implementation Methods and Best Practices,**
- **An Overview of Open Source Software,**
- **GIS Strategic Planning,** and
- **Public Data, Public Access, Privacy and Security.**

This list includes both existing and new workshops. All of the existing workshops have been reviewed and updated. The workshop is included with your registration so be sure to take advantage of this opportunity. Just another way to maximize the value of those training dollars!

Once again we will offer luncheon presentations by attendees. This is a new style of presentations introduced at last year’s conference as a replacement for the roundtable discussion topics that were offered for many years during the sponsored lunch. The idea of the luncheon presentations is to provide a more relaxed environment in which to discuss a project or an issue, allowing the presenter to engage with his listeners. Because there is one presentation scheduled for each table, the luncheon attendees can choose to sit at a table to hear a presentation that they feel is of value. The presenter is also assured that persons sitting at the table are receptive listeners interested in the particular topic. This can be a great alternative for someone who feels they have valuable information to share, but feels intimidating standing in front of a room “lecturing to an audience”.

Also initiated last year was the evening IGNITE session. This was very well received and will be repeated this year. In addition to an evening IGNITE session on Tuesday where the subject matter is fairly open, there are two daytime sessions scheduled that will utilize the IGNITE style of presentation, but will be more focused on a particular topics. The session titles are: Geospatial Data That You Never Knew Existed, and New Techniques and Technologies using GIS to Deliver Government Services = Future of GIS. These sessions should be both lively and informative.

As usual there will be an Exhibit Hall area with booth space available for vendors to market their products. The Exhibit Hall will be configured to occupy a portion of the large ballroom area that is reserved for our use. The ballroom space will also be utilized for the Opening Session, the Awards Breakfast, the luncheon presentations, and the Closing Session. We hope that this combined use of the space will encourage attendees to interact with our vendors who are so vital to making the conference possible.

A special event that will take place at the conference is the development of a new Geospatial Manager Competency Model. Many of you may be aware that the U.S. Department of Labor recently adopted a Geospatial Technologies Competency Model that addressed the skills, knowledge areas, and abilities for technicians, analysts, and developers in GIS, surveying, remote sensing, photogrammetry and cartography. The basis continued on page 3
Have you talked to anyone about URISA lately?
The more members we have, the more knowledge can be shared!
Make it a point to talk to your colleagues about the organization and encourage them to join.

Introduce young professionals and students to URISA.
Let’s expand the URISA Network together!
Your Decisions Affect Theirs

Government decisions affect more than 300 million Americans a year. With Esri® Technology, you can connect with your entire constituency. Esri helps you demonstrate accountability, foster collaboration, and make the effective decisions that keep your constituents happy.

Learn more at esri.com/urisatgp
Data Sharing Solution
As you may have seen, I wrote in the last issue about data sharing, why it’s a problem, why it hasn’t been resolved after decades of trying, and what I thought might work. I’m primarily talking about data sharing between government organizations, but I know some of the same problems exist in the private sector. I’ve been thinking about it some more over the past month or so and would like to use this space to lay out a few more specific ideas.

As I said last time, the main issues that prevent data sharing seem to be privacy/confidentiality, liability, and cost. I believe there’s a structural issue at play here, too, though. The structure of government is such that funds are allocated by elected bodies to stovepipes or silos, otherwise known as agencies or departments. Those agencies are mandated to do certain tasks; the theory being that if each agency does its tasks well, the government will function properly and the public’s needs will be served.

It doesn’t work that way in reality, of course, because nearly all the individual agency tasks require data and coordination with other agencies. The funding doesn’t account for the inter-agency activities, and there’s no governance to institutionalize or formalize the inter-agency connections. As a result, even though those connections get made, they’re tenuous and tend to dissolve as people move around, retire, etc. That’s when data sharing breaks down and duplication starts. I would add this to the list of data sharing impediments, a structural problem that makes data sharing more difficult.

In the last President’s column, I suggested that a solution to the data sharing problem might be found by emulating the work done to develop the NCEES Model Law and Rules for Surveying. The situation with surveying and GIS isn’t a precise analogy with the data sharing situation, but there are certainly similarities. We need a legal and policy framework within which the data sharing issues can be resolved jurisdiction by jurisdiction in a way that results in a consistent approach to the problem. That’s what the NCEES Model Law and Rules provide to help jurisdictions resolve conflicts between land surveying and GIS. The Model Law and Rules can be used to modify the land surveying statutes state by state.

I believe the process of developing a legal and policy framework to resolve the data sharing issues should be based on some basic assumptions. The following might be a good start:

• Public data are funded for public purposes. Public records laws support the availability of public information for accountability to, and the fair treatment of, all citizens.
• Public data should be readily available to the public, to the extent legally appropriate. However, this can only happen when development of, maintenance of, and access to public data is appropriately funded.
• Public data should be carefully managed as a government trust.
• Public business processes, particularly those involving multiple levels of government, require high quality data, put in electronic form using the latest technology.
• Sharing public data with other public agencies reduces duplicative data collection, development, maintenance, and distribution efforts.
• Sharing data with other public agencies enables better government services.

Please note that I didn’t come up with those assumptions on my own, they’ve been developed over time by a number of different groups. Perhaps they could form the foundation for the work that needs to be done on a data sharing legal and policy framework by a group of stakeholder organizations from the geospatial community. That framework could be used as a model to modify a state’s public records law.

Most, if not all, of the stakeholders are members of the Coalition of Geospatial Organizations. That Coalition spent its first couple of years learning how to work together on issues of shared importance. I believe the Coalition is ready now to take on the data sharing issue and bring it to a logical conclusion.
A code of ethics is a hallmark of a profession. The GIS Certification Institute has a professional code of ethics to which every GIS Professional must adhere; we sign a pledge to do so. The code was actually first adopted by URISA and applies to all URISA members. GISCI went further and adopted Rules of Conduct, which provide more specific guidance on ethical behavior. Most people have viewed professional ethics as part of their workplace. In this article, we will take the concept further, all the way into your personal behavior away from the workplace.

This article will focus on two key concepts. First, ethical behavior is based on respect for others. The preamble to the Code of Ethics says, “This code is based on the ethical principle of always treating others with respect and never merely as a means to an end.... It requires us to consider the impact of our actions on others and to modify our actions to reflect the respect and concern we have for them.”

Second, ethical behavior is a continuous process for living a professional life—a life that does not end at the office door. The introduction to the Rules of Conduct points out that the expectations for ethical behavior are not limited to the workplace by saying, “The Code and Rules represent a way of living a professional life, not simply how you are to behave at work. ... Living the ethical life of a professional is a never-ending test....” These key concepts are clearly stated as a foundation for the Code of Ethics and Rules of Conduct.

There is no caveat or limitation in either of these documents. There is no exclusion for dealing with your family or selling a used car. Ethical practice is a full-time job that should be 24x7 in application. While it is true that most of the specifics in the Code of Ethics and Rules of Conduct are directed to our behavior at work, not all our so limited in their application. For example, how many times might you have violated Rule 1.11 (We shall acknowledge our errors and shall not distort or alter the facts) when having a “frank exchange of views” with your spouse? Or, perhaps, you may have violated Code II.1 (Be qualified for the tasks accepted) when trying to personally take on a home improvement project in order to save a few bucks?

OK, I admit that those two examples were meant to be funny, but I am also trying to make the point that professional ethics are really personal ethics. They apply all the time. For instance, the admonishment in Code Section II.2 to “Hold information confidential unless authorized to release it” applies to that secret your neighbor told you as much as it does to information at work. Code Section IV.1 reinforces this directive when it says to “Protect individual privacy, especially about sensitive information,” as does Section IV.2, which says to “Be truthful when disclosing information about an individual.”

Similarly, the Code’s requirement to “Strive to resolve differences” is equally broad in application. The Code’s direction in Section I.2 to “Donate services to the community” is not restricted to GIS-related services. Although included under the heading of “I.1 Do the Best Work Possible,” the guidance to “Practice integrity,” “Be aware of consequences, good and bad,” and “Strive to do what is right, not just what is legal” have no language to restrict them to the office. These ethical requirements are imposed on our behavior at all times.

Ethical behavior means obvious things, like correcting the cashier when she gives you back too much money as change for your payment. It also means helping your children to understand the value of ethics and integrity and to see how you apply them all day long.

The Work Environment

Beyond these general direct applications of specific rules and positive statements in the Code of Ethics, there are numerous aspects of ethical behavior that are implicit in the requirements. For example, there is no explicit prohibition against sexual harassment. Nevertheless, sexual harassment is an ethical violation because it represents a lack of respect for the other person to whom remarks or physical behavior may be directed. Code Section IV.2 Respect Individuals tells us to “Avoid undue intrusions into the
lives of individuals.” Sexual harassment certainly qualifies as an undue intrusion. More specifically, that Code section also says, “Treat all individuals equally, without regard to race, gender, or other personal characteristic not related to the task at hand.”

Code Section II.2 is headed, “Have a Professional Relationship.” Are sexual innuendo and undesired advances part of a professional relationship? They are not. They also violate Rule III.8, which tells us that “We shall not bring dishonor to the profession,” because public managers are not related to the task at hand.

Dealing with Multiple Codes of Ethics
Like many URISA members, I belong to other professional organizations that cover GIS and/or the field in which I apply GIS methods. One of these is the International City/County Managers Association (ICMA). That organization’s code of ethics is based on “equity, transparency, integrity, stewardship of public resources, political neutrality, and respect for the rights and responsibility of elected officials and residents.” There’s that word ‘respect’ again. Tenet 3 of the Code requires me to “be dedicated to the highest ideals of honor and integrity in all public and personal relationships.” Clearly, this code of ethics applies 24x7, because public managers don’t really have any time away from the public eye.

Through the code of ethics, ICMA prohibits my supporting any candidate for elective office. I can’t give money to a campaign, sign a petition for putting someone’s name on a ballot, or call my friends and relatives to ask them to vote for a candidate. These prohibitions are spelled out in one of the 12 tenets of the code. Members have been disciplined for supporting candidates for offices that have no connection whatsoever to the member’s public employment, such as candidates for office in another state. So, while the GISCI Code of Ethics tells me to “Speak out about issues,” the ICMA Code of Ethics prohibits my doing so by supporting a particular candidate for office.

There are also other requirements that are not directly part of the ICMA code. For example, ICMA has determined that the code also requires me to actually go to work for an employer once I give my acceptance of an employment offer and to actually go to work there for at least two years. This interpretation is based on the premise that the only way to provide a professional service for an employer is to have at least two years of experience in that specific environment. What the code actually says as the foundation for this rule of conduct is, “Recognize that the chief function of local government at all times is to serve the best interests of all the people.” There have been several instances of city managers being found guilty of an ethics violation for not serving the two-year minimum, so this is not just a hypothetical extension of the code.

These personal examples point out that other professional associations apply general statements in their respective code of ethics to very specific circumstances. ICMA, the American Institute of Certified Planners, and other professional organizations provide regular education on ethical practice, either through required topical continuing education units or through magazine articles and a list of policies. Many of these same associations with examinations for conferring a credential include questions on ethics. Hopefully, any future GISP examination will do so, as well.

Conclusion
Ethical behavior is a full-time requirement of all GISPs and URISA members. It is a way of life, one that may be more than some of us may expect because it requires more thoughtful reflection when making professional and personal decisions of all types. You are not simply one of many URISA members. Each of us, in our personal and professional worlds, is the representative of the entire GIS profession. Your decisions affect us all.

We encourage you to take advantage of the resources available to you from GISCI, such as informal and formal opinions continued on page 11
Where does CAD data come from?

By Tripp Corbin, MCP, CFM, GISP

Before I get too far, let me make sure we are all on the same page about the meaning of CAD. What I am talking about are the files produced by engineers and surveyors, not the systems used by 911. I will never forget the time I got those two confused. Starting my career off in the surveying profession, I used AutoCAD which we just called CAD and I was unaware there was another meaning for CAD. So when I made my first visit to a 911 center, the director was talking about their new CAD system. I was pleasantly surprised to hear they were using a product I was very familiar with. When I asked them were they using version 13 or had they upgraded to the new 14 yet, I got blank stares. That was when I realized I had blundered. I have never gotten the two confused since. So now that we have that cleared up let’s get to the topic at hand.

GIS is getting more and more data from other professionals such as Engineers and Surveyors. Most of this data is created using computer aided drafting or design (CAD) software such as AutoCAD or Microstation. Like GIS data, CAD data can be created in a number of ways and accuracies. There is a general assumption that data created by engineers and surveyors is always extremely accurate. This is not always the case.

Like GIS data, the accuracy will depend on the methods used to collect the information found in the drawing. The most common methods for data collection include:

- **Land Surveys** (Conventional, GPS, Station & Offset)
- Using Existing Drawings
- Importing from a GIS
- Digitizing (Tablet and Heads-up)

Each of these methods has varying degrees of accuracy. As with any data you might want to integrate into your GIS, it is important to know how the drawing you are working with was created. Let’s look more closely at some of these methods engineers use to collect data.

Surveying:

Land Surveys are one of the most common ways data is collected for CAD drawings. Engineers and other professionals use land surveys because they capture the current real world conditions for the area related to their project. There are many methods that can be used by Surveyors to collect data. The three basic types of surveys are:

- Conventional (Transit, Levels, Total Stations)
- GPS
- Station and Offset

Each of these methods has different levels of accuracy as well as pros and cons.

Conventional Surveys

Conventional land surveys are what most people think of when you mention surveying. This is the person standing on the side of the road using an instrument such as a transit, level or Electronic Total Station (see picture above). Such surveys generally produce very accurate relative data. This means the distances and angles between the various features collected are extremely accurate. However this information is not normally tied to a specific geographic location. Instead it is collected in a local or assumed coordinate system.

It is not impossible to tie a survey done with conventional means to a true geographic location. If a control point or monument is nearby, a surveyor can use it to georeference his survey data. Many locations have laws that will actually require surveyors to do this. The problem is that there are not normally any control points or monuments nearby for surveyors to use and those that have been set by agencies such as the USGS have been damaged or destroyed. This means a surveyor would have to traverse a long distance to locate one of these monuments.

New technology such as combined electronic distance meters and theodolites (commonly called Total Stations) have made conventional surveys much easier and less labor intensive. Conventional methods can also be mixed with newer technologies such as GPS to further reduce cost, improve accuracy and georeference data.
Where does CAD data come from?

GPS Surveys

GPS has opened up a whole new way to easily collect georeferenced data. Unfortunately many users do not understand how GPS works or its limitations. A GPS unit purchased at a big super store for $100 does not have the same ability as one purchased from a surveying equipment vendor for $20,000. What a lot of people do not understand is that GPS equipment comes in various grades and prices depending on its capabilities.

There are three general grades of GPS equipment, each with different capabilities and levels of accuracy. The first is recreational grade.

These units cost anywhere from $100 to $1,000 depending on the bells and whistles. They have a horizontal accuracy typically between 6 to 10 meters. Some of the high end models can achieve 2 meter accuracies. The next grade is GIS/Mapping. These units are capable of sub-meter horizontal accuracy or better and they can also be used to record user-defined attributes. The highest grade of GPS equipment is survey grade. These units have a sub-centimeter horizontal accuracy in addition to having many of the attribute collection capability associated with the GIS grade.

Regardless of the grade, these units share some common shortcomings. First, their vertical accuracy is not always very good. In general, a GPS unit’s vertical accuracy is 1.5 to 2 times its horizontal accuracy. This means survey grade equipment is the only one that can record reliable elevation data. Second, since these units rely on satellites in the sky, anything that blocks the sky can adversely impact the ability of GPS to record a location. This can include trees, buildings, bridges, and people. Weather and other atmospheric conditions such as sun spots can affect the reliability and accuracy of GPS data.

Station and Offset Surveys

This method is most commonly used for studies, utility relocation or preliminary roadway design. The Station and Offset method is a quick and easy method to locate objects as they relate to an existing road. This method consists of someone measuring a distance down the centerline or edge of pavement of a road normally starting from an intersection. Once they are approximately perpendicular to the road and the object to be located, they will record that distance as a station in the format of hundreds + tens of feet (i.e. 2+57.06 = 257.06 feet). Once they record the station, they then measure the offset from the station to the object being located recording not only the distance but also the side of the road the object is on. A measuring wheel or a tape is the most common tools used to take these measurements. This is the least accurate method of surveying.

Other methods of data collection:

Just as we do in GIS, Engineers and Surveyors will often use existing data to start a project, especially for the preliminary design phase of their projects. This existing data includes existing engineering drawings, survey plats, hardcopy maps, aerial photos or GIS data. This data is imported into their current project using many of the same methods we use in GIS such as heads-up digitizing, raster to vector conversion, or doing a di-

continued on page 11
ATTEND THE GEOSPATIAL SUMMIT
to learn about strategies and best practices for implementing GIS technologies in your agency and enterprise operations. Hear about the successful geospatial solutions being applied today to boost productivity and respond to government initiatives.

Customize your program today and choose from focused sessions on:

- Case Study: How DHS & DoT Designed Successful User Experiences for Decision Makers
- Open Source GIS Support to the Deepwater Horizon Oil Spill Response
- Next Generation 9-1-1
- Integrating and Sharing Data: Lessons Learned from the EPA

For more information and to register, visit: GeospatialSummit.com

Register by August 12 and SAVE $200!
Use Discount Code: GSAD3

KEYNOTE SPEAKER
Michael Byrne
National Incident Management Assistance Team, FEMA

GIS to the Rescue: The Critical Role of Geospatial Technology in Disaster Response
regarding decisions you have to make. Many other professions have decades of experience in applying their codes of ethics. GISCI and the GISP credential are relatively new. We need to develop a clear rubric of ethical behavior. Please give us examples of situations you have faced and the decisions you made. We are not interested in names and dates. We need the essential aspects of the situation. We will work with these examples and you to develop a broader set of situational guidance for the profession. In this way, we can better define the most important part of professional life: being ethical.

Al Butler is the GISCI Ethics Officer.

About the Author:
Tripp Corbin, a GIS Certified Professional and an Esri Certified Trainer, is the Vice President of GIS/IT Services for Keck & Wood, Inc. and has over 20 years of Surveying and GIS related experience. Tripp is an active member of the GIS community. He is a member of several GIS and mapping related organizations including URISA International, multiple local URISA Chapters, the Surveying & Mapping Society of Georgia, GITA, PeeDee Users Group and the Seven Hills Regional Users Group. Tripp is a past president of Georgia URISA and is the current chair of the URISA Chapter Relations Committee.

Advertise in THE GIS Professional!

For details, contact URISA at (847) 824-6300, info@urisa.org
Using GIS to Identify Suitable Areas for Smart Growth and Transit Oriented Development (TOD) for Specific Areas within the City of Minneapolis, Minnesota.

Renewed interest in America’s cities and investment in transit has lead to the development of new transit oriented developments (TODs) and other Smart Growth developments being built all across the country. In 2008, Minnesota passed legislation that allowed counties in the Minneapolis-St. Paul Metropolitan Area to levy an additional ¼ cent sales tax to fund improvements to the transit system, including light rail, commuter rail and bus rapid transit. This new tax resulted in $87 million in 2009 to be spent on transit improvements. The City of Minneapolis already had a high participation in alternate modes of transportation; cycling has become increasingly popular with 3.8 percent of commuters using it as their primary mode of transportation, second highest in the United States.

Advocates claim communities benefit from TODs that provide compact development, decrease automobile dependency, add retail opportunities, and improve quality of life. It has also been shown that residents of transit-based housing are as much as five times more likely to commute to work using rail than their counterparts. In order for these benefits to take hold there needs to be investment in transit systems and land use planning. The connection between land use and transit choices such as building light rail transit (LRT) can be used as a tool to revitalize neighborhoods, end cycles of poverty and lower crime rates. Identifying and assembling large tracts of land that satisfy all the conditions for successful transit oriented development can be difficult. This investment in Transit and TODs might also be key to attracting to cities the young and educated people who will be essential to the well-being of metropolitan areas in the future.

Methodology
This study classified lands based on their suitability to support TODs and Smart Growth Development within the City of Minneapolis. More than 20 different feature classes were utilized during the course of the study and were derived from numerous sources; City of Minneapolis, Metro Transit (Local Transit Agency), Local Car sharing Organizations, MetroGIS (Regional GIS Forum) and also created from Aerial imagery. Each feature class was assigned a numeric value and/or buffer distance corresponding to their level of influence on TODs and Smart Growth Development.

Three Theme Models
The difficulty with identifying lands suitable for TODs and Smart Growth Development was accomplished with GIS and Model Builder models to identify those areas most suitable within the City of Minneapolis. The feature classes that were assigned numeric values were organized into one of three groups based on similar characteristics. The three different themes that were used to create model builder models were: Land Use, Community Features, and Transit. The final results provided suitable areas for each of these three themes. Model Builder provided an easy way to chart the steps in the model and make adjustments during the course of the study and provides

Higher Values (shown in red) are more suitable for transit-oriented development.
Using GIS to Identify Suitable Areas for Smart Growth and Transit Oriented Development (TOD) for Specific Areas within the City of Minneapolis, Minnesota.

The land use model provided an understanding of areas within the City that have mixed use and higher density land types conducive for TODs. A large emphasis was placed on locations identified in Minneapolis’ Plan for Sustainable Growth as Commercial Nodes and Growth Centers. These areas are identified as providing mixed uses oriented towards pedestrians and contain areas deemed a destination that have high levels of transit service and attract highly skilled workers and high paying jobs.

The Community Features model identified assets that attract people from areas beyond the city. These areas also tend to maintain an urban form that is more pedestrian friendly than other portions of the city and contain features such as schools, parks, job centers, retail and cultural features.

The Transit model contained the highest possibility of total suitability points, making it the most important factor in the final suitability. The initial intent of the study decided that high levels of transit service were considered a very important element in creating successful opportunities for TODs and Smart Growth development, especially those areas near the Hi-Frequency Service Network, areas with service every 15 minutes or better. Some of the feature classes contained in this model were Light Rail Transit Stations (LRT), Bus Rapid Transit Stations, (BRT), Commuter Rail, bus routes, car sharing vehicles, and also areas that are served by trails, bike lanes or bikeways.

Final Model
The final model was a compilation of the three submodels (Land Use, Community Features, and Transit) that identified the most suitable lands for development in the City of Minneapolis. The highest obtained values were found within the central portion of the City between Downtown and the University of Minnesota campus. Other areas that scored high were areas near LRT stations, neighborhoods with high levels of bus service, and areas identified in the Minneapolis plan for sustainability as activity centers such as Uptown and Lyn-Lake neighborhoods, southwest of Downtown. Areas that measured poorly lacked major retail or employment areas, had lower concentrations of high density land uses, and were not served by LRT and BRT stations. With future transit investments, these areas may one day become ideal places to locate more sustainable types of development. The results of the study may be of interest for future studies, policy makers, planners, developers, transit and TOD advocates, or informed citizens.

To find out more on this study visit http://www2.smumn.edu/ra/gis/GradProjects/MeyersN.pdf.

For more information, contact Nick Meyers at: mailmeyers@gmail.com
Welcome New URISA Members

Salem Al Marri, Emirates Institution for Advanced Science and Technology, Dubai, United Arab Emirates
Naeema Alhosani, UAEU, Al Ain, United Arab Emirates
ALI Alshehhi, Space Reconnaissance Center, Abu Dhabi, United Arab Emirates
Khalifa Alsauvaidi, Emirates Real Estate Solutions ERES, Dubai, United Arab Emirates
Thani Alzaffin, Emaratech, Dubai, United Arab Emirates
Christopher Ard, City of New Orleans, Chalmette, LA
Shawn Baldwin, CAE USA, Orlando, FL
David Bandi, Jackson State University, Jackson, MS
Matthew Basanta, Stantec, Lexington, KY
David Beard, 911 Solutions Inc., Denver, CO
Fred Beisse, Lane Community College, Eugene, OR
Rebecca Beriswill, ECT, Lakeland, FL
Heather Bernardin, La Ronge, SK, Canada
Prabhati Bhattacharya, Odenton, MD
Drew Billups, Lexington, KY
Nathan Blakemore, Madison, AL
Tonny Bogere, U.S. Centers for Disease Control and Prevention (CDC), Uganda, Kampala, Uganda
Lisa Boss, Midland Emergency Communication District, Midland, TX
Jennifer Boulware, NOAA CSC (contractor), Charleston, SC
Heather Boyd, Santa Ana Regional Water Quality Control Board, Anaheim, CA
William Bridges, University of Alabama at Birmingham, Vestavia Hills, AL
Jay Buhr, JIMAPCO, Inc., Glennmont, NY
J Kevin Byrne, Roseville, MN
Emily Caltagirone, Heidi Design, LLC, Temple Terrace, FL
Daniel Camboia, GISP, Apo, AP
Alexandr, Carroll, Albany, NY
Michael Chick, Riverside, CA
John Codd, DC Office of Tax and Revenue Real Property Assessment Division, Washington, DC
Rick Comstock, GISP, Consumers Energy, Jackson, MI
Erik Cortes, Seattle, WA
Jim Cousins, S.S. Papadopoulos & Associates, Inc., Kensington, MD
William Craft, GISP, PenBay Solutions, Gardner, KS
Deepak Dahal, Hong Kong, Hong Kong
Sarah DeMezzo, Aquarian Water Company, Bridgeport, CT
Rodney Denning, Grand Valley State University, Grand Rapids, MI
Erin Diurba, GISP, Critigen, Portland, OR
Kimberly Dodson, GISP, City of El Cajon, La Mesa, CA
Wen Dombrowski, New York, NY
Scot Edmondson, InfoPro Corporation, Montgomery, AL
Elgaali Elgaali, Higher Colleges of Technology, Fort Collins, CO
Rastislav Elgr, Alberta Geological Survey, Edmonton, AB, Canada
Arthur Elliott, Hayden, ID
Weiwen Feng, Tomball, TX
Tina Fenske, City of Garden City, Meridian, ID
Janet Florendo, Weston, FL
Jim Floyd, MESH, Indianapolis, IN
Eric Fox, Urban Design 4 Health, Inc., Seattle, WA
Adam Fritzler, Consultant, San Francisco, CA
Jessy Fuelkell, Strathcona County, Sherwood Park, AB, Canada
Patrick Gault, Baltimore, MD
Axel Gierbolini, Geodirecciones Inc, Bayamon, PR
Paul Giers, Sanborn Mapping, Charlotte, NC
Garfield Giff, GPC Global Information Solutions, Abu Dhabi, United Arab Emirates
Jorge Goicochea, ACS, a Xerox Company, Petaluma, CA
Eduardo Goitia, San Juan, PR
Katherine Good, GISP, Fairfax County, Woodbridge, VA
Mandy Gosal, CH2M HILL, Chino Hills, CA
Jay Halligan, GISP, West Chester, PA
Maged Hanna, Society of Engineers - UAE, Dubai, United Arab Emirates
Russell Hanson, Huitt-Zollars, Irvine, CA
Alex Harnocz, Franklin SWCD, Columbus, OH
Kevin Hayes, City of Jacksonville, EQD, Jacksonville, FL
Rose Heyer, YEI ENGINEERS, INC., Alameda, CA
Stephan Hoche, UNCC, Indian Trail, NC
Jonathan Hodel, Cloudpoint Geographics, Roanoke, IL
Mark Howman, QGC, Brisbane, QLD, Australia
Ginger Huff, GISP, Pikeville, NC
Jill Hume, GISP, Alberta Energy and Utilities Board, Calgary, AB, Canada
Timothy Hutzley, Technology Associates, Apple Valley, CA
Ari Iwaniski, Beverly Hills, CA
Marty Jank, The Schneider Corporation, Greenfield, IN
Kevin Jenkins, NY Regional Office Census Bureau, New York, NY
Christopher Johnson, Marietta Water, Marietta, GA
Deborah Johnson, Aerial Information Systems, Redlands, CA
Craig Johnson, LAGIC, Baton Rouge, LA
Megan Jones, Beckville, TX
Samer Joudi, GPC Global Information Solutions, Abu Dhabi, United Arab Emirates
Atif Karrani, Sharjah Electricity & Water Authority, Sharjah, United Arab Emirates
Gary Keffer, Beaverton, OR
Rosmarie Kelly, Georgia Division of Public Health, Covington, GA
Brian Kelly, Panda Consulting, Boca Raton, FL
Tyler Kiehle, Terra Firma GIS, LLC, New Orleans, LA
Nicholas Kovac, Portland, OR
Peter Krawczak, Tucson, AZ
Christianna Kretschmann, Pinellas County, Clearwater, FL
Unni Krishnan, GPC Global Information Solutions, Abu Dhabi, United Arab Emirates
Kris Kronlein, URS CORP, Beaufort, SC
Samuel Krueger, Los Angeles Department of Water and Power, Hollywood, CA
Dean Lambert, San Antonio College, San Antonio, TX
Eddie Landrum, City of Odessa, Odessa, TX
James Langtry, GISP, US Geological Survey, Lincoln, NE
Jessica Letizia, City of Airline, Airline, AB, Canada
Peter Littleton, Littleton & Associates, Littleton, CO
Benjamin Lundberg, Tuscaloosa, AL
Elizabeth Lusk, GISP, US Navy, Jacksonville, FL
Erin Lybeck, BMLA Landscape Architecture, Fullerton, CA
Tamar Manik-Perlman, Azavea, Philadelphia, PA
Bruce Maxwell, Oakland, CA
Todd McAuliffe, Planning Communities, Raleigh, NC
Daron McCausley, Portland, OR
Sarah McDonald, Strathcona County, Sherwood Park, AB, Canada
Brendon McHugh, Lowe Engineers, Atlanta, GA
Lucio Mendez, Harris County Appraisal District, Houston, TX
Yuanhang Meng, Westerville, OH
Sherri Michl, Portland, OR
Aaron Miller, Corona, CA
Margaret Minzner, Dearborn County, Lawrenceburg, IN
Majed Mohd, DEWA, Dubai, United Arab Emirates
Gary Morrison, GISP, Wilson & Company, Overland Park, KS
Mark Morrison, GISP, Michael Baker Jr Inc, Reno, NV
Tendo Joseph Mpanja, Uganda Virus Research Institute, Kampala, Uganda
Abdel-Rahman Muhsen, Calgary, AB, Canada
Stephanie Mumaw, GISP, Wightman Petrie, Union, MI
Brian Naberezeny, Exeter, PA
Dorothy Nash, NYC Office of Emergency Management, New York, NY
Hussain Nasser, Dhahran, Eastern Province, Saudi Arabia
Sandy Navarro, University of California, San Francisco, Sacramento, CA
Lan Nelson, Nolte Vertical Five, San Diego, CA
Dayakar Nittala, National Center for Biodefense Communications, Jackson, MS
Michael O’halloran, City of Ocoee, Ocoee, FL
Charles Osterman, Adams County, Brighton, CO
Steven Overstreet, CACI, Ruckersville, VA
Sam Palmer, University of Florida - GeoPlan Center, Gainesville, FL
Bryan Parlee, Sacramento, CA
Meredith Payne, Corvallis, OR
Brian Peasley, Nevada City, CA
Dennis Pelletier, Normandeau Associates, Inc., Bedford, NH
Manuel Perez, City of Bradenton, Bradenton, FL
Marques Perry, Aiken, SC
Justin Peters, Indiana University, Bloomington, IN
Paul Petersen, Marathon GIS, Inc., Smithfield, UT
Loren Pfaul, Evergreen, CO
Jason Pflotenauer, St. Lawrence County Planning Office, Canton, NY
Ronald Provisnal, Spokane, WA
Abdel Quesada, Regional Geospatial Service Center - UTEP, El Paso, TX
Anna Radue, Indiana University, Bloomington, IN
Desiree Ramos, County of San Luis Obispo, San Luis Obispo, CA
Brandy Rank, Adams County Planning and Development, Brighton, CO
K.D. Rex, Town of North Andover, North Andover, MA
Anna Roberts, Northwestern University, Chicago, IL
John Robinson, GISP, Dewberry & Davis, Parsippany, NJ
Stephen Rock, Hopewell, NJ
Eliot Rodriguez, Hacketstown, NJ
Timothy Rosner, Rails-to-Trails Conservancy, Arlington, VA
Richard Rupp, Washington State University, Colton, WA
Mary Schuette, City of Steamboat Springs, Steamboat Springs, CO
Zachary Schwartz, Sarasota, FL
Roberto Sedano, Akimeka LLC, Kihei, HI
Brian Shumon, FEMA Region II, New York, NY
Laura Simmons, Galena, IL
William Spikowski, Spikowski Planning Associates, Fort Myers, FL
Kevin St.Bernard, St. George, Grenada
L. Stanfield, US Environmental Protection Agency, Chicago, IL
Jerry Steensom, Fort Collins, CO
Debra Stein, GISP, Sweetwater Authority, Chula Vista, CA
John Streub, Nacogdoches County, TX, Nacogdoches, TX
Joe Suglia, Adams County Planning and Development, Brighton, CO
Tenaya Sunbury, Institute for Circumpolar Health Studies, Anchorage, AK
Havan Surat, City of Fort Worth, Fort Worth, TX
Mike Swartz, Austin, TX
Jason Sweet, GISP, Greenhome & O Mara Inc, Overland Park, KS
Joshua Sznaider, San Diego, CA
Travis Talbiter, HDR Inc, Omaha, NE
Timothy Teaford, Factor 360, Pierre, SD
Mike Team, Cary, NC
Kenneth Then, USGS, Sun Prairie, WI
Janet Thome, Guadalupe-Blanco River Authority, Seguin, TX
Kenneth Thompson, Delaware Valley Regional Planning Commission, Philadelphia, PA
Katie Tomany, Environmental Services, Inc., Raleigh, NC
Reed Tomlinson, EduContribution, Inc., Overgaard, AZ
Chris Tonkovic, GSA Fleet, Arlington, VA
Thomas Tricot, GISP, City of High Point, High Point, NC
Sophia Tserg, GISP, Los Angeles County, Baldwin Park, CA
Rebecca Varin Cipriani, GISP, City of Colorado Springs, Colorado Springs, CO
James Vogl, GISP, City of High Point, High Point, NC
Beverly Ward, BGW Associates, LLC, Tampa, FL
Greg Webb, GISP, City of Fort Worth, Arlington, TX
Howard Williams, Missoula, MT
Jeremy Williams, City of Cleanwater, Clearwater, FL
Carlyne Lyndy Worsham, Thailand Burma Border Consortium, Tucson, AZ
Joie Worthen, Mountlake Terrace Police, Mountlake Terrace, WA
J. Yarbrough, GISP, Wilbur Smith Associates, Columbia, SC
Emily Yates, GISP, Chicago Botanic Garden, Glencoe, IL
Sal Yaya, Fugro Chance, Inc, Houston, TX
Sudha Yerramilli, Jackson State University, Jackson, MS
Muhammad Zafar, Liverpool, Merseyside, United Kingdom
Jinlin Zhang, Solano County, Fairfield, CA
NEW SPONSOR!
GPC-Global Information Solutions
P O Box 129060
Abu Dhabi, United Arab Emirates
Tel: + 971 2 666 6574
http://www.gpc-gis.ae Email: admingpc@gpc-gis.ae

Based in Abu Dhabi, UAE, GPC Global Information Solutions LLC (GPC-GIS), was launched in 2008 by the Geographic Planning Collaborative, Inc. (GPC) to specialize in the delivery of geospatial information services to the MENA Region. By harnessing more than 25 years experience of GPC partners, we provide consulting services in Geospatial Information Technology and Services (GITS), Spatial Data Infrastructure (SDI), Geospatial Education, Location Based Services and Information Management for a wide variety of organizations and projects in the region.

The GPC-GIS is a full service consulting firm and consortium of international collaborators focused on supporting our clients in the development and application of geospatial and related information technologies to a wide variety of application areas. Most importantly, GPC-GIS leverages the GPC network of highly skilled professionals dedicated to harnessing the power of existing and emerging technologies on behalf of our clients, and in assisting them in effectively integrating these tools within their own planning efforts and day-to-day operations.

While we are best known for our technology focus, our most valuable resource is our people. We have assembled an international, complementary team of multi-disciplinary professionals who have the background to turn emerging technologies into practical tools for carrying out real life tasks within a wide range of topics. Our consultants and partners includes seasoned professionals with expertise GITS, SDI, geospatial education, urban and regional planning, location based services, traffic management, emergency response, security, resource management, geography, earth sciences, remote sensing, computer science, landscape architecture, environmental assessment, multi-media, graphic communications, and international development finance.

GPC-GIS consultants and partners create, configure and apply technology and services to meet the specific needs of each client. We stay abreast of the latest technological innovations, and we assemble and manage multi-disciplinary teams to solve our client’s problems. Our network of affiliated companies and specialized consultants gives us the ability to configure highly dynamic teams of professionals with the right skills needed to address any specific project’s requirements, regardless of company affiliation or geographic location.

GPC-GIS has a growing staff of seasoned Arab nationals and international professionals, that are based in Abu Dhabi and support our clients in the region in the areas of: GIS Consulting and Technical Support, Strategic GIS Startup Planning, Enterprise System Design and Implementation Planning, GITS Project Planning and Management, GITS Professional Development, Database Development, Applications Programming, Web Based Mapping, Project Financing, GIS and SDI Economic Development, Facility Management, Urban and Regional Planning and Resource Management, SDI Implementation and Maintenance, and Location Based Services to name a few.

PLATINUM CORPORATE SPONSOR
Esri

GOLD CORPORATE SPONSOR
CDM - Camp Dresser & McKee Inc.

SILVER CORPORATE SPONSORS
Data Transfer Solutions
Pictometry

FEDERAL AGENCY SPONSOR
US Census Bureau

BRONZE CORPORATE SPONSORS
Manatron Inc
Merrick & Company
Milsoft Utility Solutions Inc
The Sidwell Company
Valtus Imagery Services

BUSINESS SPONSORS
24GIS
GIS Innovations Ltd
GPC-Global Information Solutions
H. Davis Cole & Associates, LLC
Highland Mapping Inc
North River Geographic Systems Inc.
Spatial Focus Inc
Wellar Consulting Inc
Abstract Submission Deadlines Approaching

The 2012 GIS/CAMA Technologies Conference will take place in San Antonio, March 12-15. Abstract submissions are due on or before September 23. Submit your presentation idea today! The committee will consider all submissions. Some of the interesting topics that are being suggested:

- Funding assessment operations and projects
- Modeling unstable markets using advanced techniques
- GIS in crisis – Sharing data instantly using GIS when nature wreaks havoc
- Geospatial valuation tips and tricks
- For Better or For Worse – Keeping staff engaged in the face of cutbacks and other workforce development challenges
- Raising public understanding – New ways of showing the public what we do and how we do it
- …and much more

The 2012 California GIS Conference will take place in Sacramento, April 11-13. Abstracts are due for this conference on or before October 3. Visit www.calgis.org for details!

- Education, Health, and Community - The focus of this track is on serving geospatial information needs and the application of GIS within the community, and the areas of education and health.
- Natural Resources, Water, and Agriculture Technical Applications - This track covers the application of geospatial technologies in the broad areas of natural resources, water, and agriculture.
- Risk and Emergency Management - This track covers the application of geospatial technologies in the broad areas of risk management, mitigation, and planning or responding to emergency situations.
- Technical Applications - This track includes presentations on specific applications of geospatial technology. This track includes the use of emerging technologies, web applications, and open source applications.
- Government and Policy - This track is focused on laws, regulations, policies, and standards which affect the geospatial community. It is intended to include presentations or discussions on how the geospatial community can effectively respond to requirements that affect our work.
- General Geospatial - This is an open track for presentations and discussions on geospatial topics of interest to the geospatial community.

Why do URISA members value their membership?

Click here for the latest features.

Have you talked to a colleague about URISA membership lately?
Chapter Corner

CalGIS 2012 will take place in Sacramento, April 11-13. Dan Henderson and Dave Hansen, from NorCal URISA, are serving as Conference Chair and Program Chair respectively. The conference committee is accepting abstracts through October 3. Visit www.calgis.org for more information.

The Québec Chapter of URISA, AGMQ, is holding its second 2011 conference on November 2nd in Drummondville, Québec, Canada. The theme of the day is: GIS from Producer to Consumer. We are now in the era of Government 2.0 and citizens are at the centre of GIS departments processes. As many GIS managers can attest, documenting “Citizen Benefits” is now part of justifying municipal and governmental GIS projects. This conference will offer a window on how producers and consumers of GIS information are adapting to this new reality by presenting:

• Technologies and services able to support the citizen as a stakeholder;
• Organizational perceptions on the value of geographic information;
• Best practices to enable clients to contribute to the geographic information value chain;
• Strategies used by various municipal stakeholders to obtain approval of GIS projects within their organizations (Council, higher management, departments, citizens, etc).

For more information, please link up with us at: http://www.agmq.qc.ca Please note that all conferences are in French.

The Chicagoland Chapter is having its Fall quarterly meeting on September 9th. Jillian Elder from Walgreens will be speaking on GIS and Retail.

BAAMA is hosting a meeting on NeoGeography on Thursday, September 22. URISA’s Ontario Chapter is hosting its 12th Annual Summer Event, Geospatial Seminar & Golf Tournament on August 24, 2011.

Are you in Kentucky or Tennessee? Contact Kim McDonough and/or Randy Hale if you’re interested in a local chapter! Also, join the LinkedIn group for discussions.

The Ohio URISA Chapter is planning the 2011 Ohio GIS Conference with the County Engineers Association of Ohio and OGRIP, September 29-30 in Columbus.

The New England Chapter (NEURISA) will host its annual conference on Monday, October 3rd at the Old Sturbridge Village, Sturbridge, Massachusetts. This one day annual conference will include keynote sessions, vendor demonstrations, and presentations from our colleagues in the geospatial and information technology community.

Georgia URISA will be hosting its 2011 Georgia URISA Workshop on October 13 – 14, 2011 at the Unicoi State Park and Lodge in Helen, GA. Workshop topics will include Asset Management, Field Automation Options for Local Government, GIS in the Cloud and a GIS Certification Roundtable Discussion. For more details, please go to www.gaurisa.org or contact Xavier Davis, Georgia URISA Conference and Workshop Chair, at events@gaurisa.org.

URISA’s Rocky Mountain Chapter is preparing for the 2011 GIS in the Rockies Conference, August 31-September 1 in Denver. For details, click here.

URISA Alabama members have connected via their LinkedIn Group.

The Carolina Chapter (CURISA) is updating roles and responsibilities as an organization and documenting their working structure using Google Docs to ensure a smoother transition and common vision as the chapter moves forward. Two Census workshops will be presented on September 7 and 9th. They are also starting to plan for co-sponsoring the next NC GIS Conference early in 2013.

The Chesapeake Chapter is continuing efforts to build and revitalize the chapter, holding regular monthly meetings.

Seen at the GIS in Public Health Conference!

Bill Davenhall, Esri’s Health & Human Services Industry Solutions Manager, is a longtime URISA member. He presented the opening keynote address at the recent GIS in Public Health Conference in Atlanta. He offered $100 to anyone who had their URISA membership card in their wallet. (Lucky for Bill, we haven’t had membership cards in many years… Bill’s card is one of the first!)
board meetings since June, building a chapter website, and launching social media sites on LinkedIn, Facebook and Twitter. We are also in the process of registering employer identification number (EIN) so that we can open a bank account to manage chapter money for website hosting, renting a PO box for chapter business address, EIN application expense etc. They are also updating their bylaws.

The **Mid Atlantic** Chapter (MAC URISA) is planning for its Fall Meeting in Philadelphia on the topics of **Metadata and ArcGIS 10** and **GIS Return on Investment**. They’ve also started planning for their 2012 conference.

Is it on your calendar?

GIS-Pro 2011

URISA’s 49th Annual Conference for GIS Professionals

Membership Recruitment Challenge 2011!

Help to grow the URISA Community.

Talk to your coworkers, colleagues, peers, clients, young professionals, students… tell them about URISA and why you feel it is an important organization to join!

Is it the Resources? Programs? Connections? Advocacy?

From September 1 until November 1, the URISA member who promotes the most new memberships will receive a complimentary registration to GIS-Pro (2011 or 2012) and all of those who encourage at least one new member to join will be entered into an additional drawing for a complimentary GIS-Pro registration.

Direct folks to the Membership page http://www.urisa.org/membership and the online application.
Platinum Corporate Sponsor

Esri
380 New York St
Redlands, CA 92373
Phone: (909) 793-2853
www.esri.com
info@esri.com
Since 1969, Esri® has been helping organizations map and model our world. Esri’s GIS software tools and methodologies enable them to effectively analyze and manage their geographic information and make better decisions. They are supported by our experienced and knowledgeable staff and extensive network of business partners and international distributors.

A full-service GIS company, Esri supports the implementation of GIS technology on the desktop, servers, online services, and mobile devices. These GIS solutions are flexible, customizable, and easy to use.

Esri software is used by hundreds of thousands of organizations who apply GIS to solve problems and make our world a better place to live. We pay close attention to our users to ensure they have the best tools possible to accomplish their missions. A comprehensive suite of training options offered worldwide helps our users fully leverage their GIS.

Esri is a socially conscious business, actively supporting organizations involved in education, conservation, sustainable development, and humanitarian affairs.

Gold Corporate Sponsor

CDM
50 Hampshire Street
One Cambridge Place
Cambridge, MA 02139
Phone: (617) 452-6353
www.cdm.com
lovettm@cdm.com
CDM provides professional consulting services that address every phase of the GIS lifecycle. We offer a wide range of services to public, private, and utility clients; including planning, data conversion, organizational development, applications development, systems integration, and program management. Our project teams help define GIS requirements, establish appropriate funding vehicles, design network and data infrastructure, and build spatially-enabled productivity tools. CDM has over 3,700 staff in more than 100 offices worldwide.

Silver Corporate Sponsors

Data Transfer Solutions
3680 Avalon Park Blvd East, Suite 200
Orlando, FL 32828
Phone: (407) 382-5222
www.dtsgis.com
aibaugh@dtsgis.com
The strength of DTS is our people and their ideas. Our clients come to us for customized solutions to solve their unique challenges. DTS is a leader in Asset Management, Geographic Information Systems, and Transportation Planning. We are a federally recognized small business. Headquartered in Orlando, Florida, DTS truly has established itself as a leader in our field nationwide. The firm has expanded across the country with offices in Fort Collins, Colorado, Charlotte, North Carolina, and San Antonio, Texas. We develop solutions for public and private entities and have worked at all levels of state and local government.

Pictometry International
100 Town Centre Dr, Suite A
Rochester, NY 14623
Phone: (585) 739-1854
www.pictometry.com
scott.sherwood@pictometry.com
Pictometry International Corp. is a leading provider of geo-referenced, aerial image libraries and related software. Pictometry has captured nearly 130 million digital aerial images which represent more than 80 percent of the United States population and all major U.S. markets. Using its proprietary imaging process, Pictometry captures geo-referenced, high-resolution orthoptonal (straight down view) and oblique (captured at an angle) imagery within which structures and land features can be measured. Pictometry customizes and markets these technologies for government and commercial applications. Pictometry’s standard oblique imagery includes second order visualization tools that do not produce authoritative or definitive information (surveying).

Federal Agency Sponsor

U.S. Census Bureau
4600 Silver Hill Road
Washington, DC 20233
www.census.gov/
The Census Bureau serves as the leading source of quality data about the nation’s people and economy. We honor privacy, protect confidentiality, share our expertise globally, and conduct our work openly. We are guided on this mission by our strong and capable workforce, our readiness to innovate, and our abiding commitment to our customers.

Merrick & Company
2450 South Peoria Street
Aurora, CO 80014
Phone: (303) 751-0741
www.merrick.com
gis@merrick.com
Merrick & Company provides comprehensive, client-focused land information services, including image acquisition (aerial and satellite), GPS Surveying, digital photogrammetry, Light Detection and Ranging (LiDAR), digital imaging, digital orthophotography processing, LiDAR software tools (MARS®), GIS database design and application programming. Merrick’s primary markets include city/county, federal government, electric utilities, engineering design firms and pipeline operators. Merrick’s GIS/Survey/Photogrammetry Core Team utilizes leading edge processes and technologies to cost-effectively tailor data collection, editing and translation to meet any specifications and GIS format requirement. The company’s services frequently involve custom application programming, integrating the most efficient hardware and software systems.

Bronze Corporate Sponsors

Manatron Inc.
510 East Milham Ave.
Portage, MI 49002
Phone: (800) 666-5300
www.manatron.com
info@manatron.com
With over 1,600 clients in 41 states and over 30 countries internationally, Manatron is a leading global, property-centric company. With 40 plus years of innovative software and system development breakthroughs for local and state governments, Manatron’s flagship solution GRM is an integrated suite of Government Revenue & Records Management web-based property recording, assessment and tax software products.

Manatron designs, develops, markets and supports a family of web-based and client-server application property software products for state and local governments. Manatron’s products support back-office processes for governmental jurisdictions, while helping them also meet the broader needs of tax payers, industry professionals and businesses via eGovernment and Internet applications.
Milsoft Utility Solutions Inc
4400 Buffalo Gap Rd Ste S150
Abilene, TX 79606
Phone: (800) 344-5647
Sharla.milliorn@milsoft.com
www.milsoft.com
Milsoft Utility Solutions has provided powerful software for power system professionals for more than two decades. Electric utilities can pick from a suite of solutions including Electric T&D Modeling and Analysis, Outage Management, Electric Utility GIS & Field Engineering, and Interactive Voice Response. Milsoft’s support and service is simply outstanding and unwavering. Milsoft leads its industry with a customer base of more than 1,000 electrical utilities, educational institutions and consultants in the United States and abroad. There’s never been a better time to try Milsoft Utility Solutions.

The Sidwell Company
675 Sidwell Court
St. Charles, Illinois 60174-3492
Phone: (877) SIDWELL (877-743-9355)
Phone: (630) 549-1000
www.sidwellco.com
info@sidwellco.com

The Sidwell Company is an industry leader of GIS solutions for cadastral mapping and land-records management, and a provider of aerial photography, software development, and photogrammetric services. Already well established in the Midwest as a regional firm, Sidwell has become a name recognized on the national GIS level with the success of their Parcel Builder™ product. Parcel Builder is an extension to ESRI®’s flagship GIS software, ArcGIS® 10. Sidwell has been recognized as a Foundation Partner by ESRI multiple times (in 2003 and 2008), which serves as testimony to the company’s commitment to providing premier GIS solutions and services using ESRI technology.

Valtus Imagery Services
212, 5438-11th St NE
Calgary, AB T2E 7E9 Canada
Ph: 403-539-9543
www.valtus.com
tammy.peterson@valtus.com

Valtus Imagery Services provides end-to-end solutions for the storage, management and delivery of geospatial information in the form of aerial & satellite imagery and LiDAR data, helping government and commercial users gain a better understanding of the geographies they serve. Various access options are available, allowing customers to choose the method most conducive to their structure and environment.

GIS Innovations Ltd.
310-1200 W 73rd Ave
Vancouver, BC V6P 6G5 Canada
www.gis-innovations.bc.ca
bobj@gis-innovations.bc.ca
GIS Innovations Ltd. was incorporated in July of 1993 with a mission statement: to help customers succeed with GIS technology. The principal, Bob Janowicz, has been working in GIS since 1985. In fact, most of our team has been involved with GIS related technologies since before 1990. GIS Innovations Ltd flagship product is the Road Atlas of BC. GIS Innovations has wealth of skill and expertise at integrating and validating GIS data, especially address and street related data. GIS Innovations also works with a collection of local consultants in projects related to land and/or environmental planning studies.

GPC-Global Information Solutions
P O Box 129060
Abu Dhabi, United Arab Emirates
Tel: + 971 2 666 6574
http://www.gpc-gis.ae Email: admin-gpc@gpc-gis.ae
Based in Abu Dhabi, UAE, GPC Global Information Solutions LLC (GPC-GIS), was launched in 2008 by the Geographic Planning Collaborative, Inc. (GPC) to specialize in the delivery of geospatial information services to the MENA Region. By harnessing more than 25 years experience of GPC partners, we provide consulting services in Geospatial Information Technology and Services (GITS), Spatial Data Infrastructure (SDI), Geospatial Education, Location Based Services and Information Management for a wide variety of organizations and projects in the region.

H Davis Cole and Associates LLC
2321 North Hullen Street, Suite B
Metairie, Louisiana 70001
Phone: (504) 836-2020
akelsey@hda.co
www.hda.co
H. Davis Cole & Associates, LLC (HDA) was founded in 2006 on the principle of providing exceptional client service through performance, quality and teamwork. HDA is a full-service civil and environmental engineering consulting firm providing a wide array of services to both public and private sector clients. In addition, HDA offers project and community planning through the gulf coast region. Through project and community planning, HDA provides GIS consulting services including data collection, data conversion, mapping, spatial analysis, cartographic development, and photogrammetric services.

Highland Mapping Inc.
P O Box 2124
Banner Elk, NC 28604
Phone: (828) 898-7720
www.highlandmapping.com
Tiffany@highlandmapping.com
Highland Mapping, Inc. is a GIS consulting and custom mapping firm based in western North Carolina. We utilize GIS technology to help our clients increase productivity, make better business decisions, and create competitive advantage.

North River Geographic Systems, Inc.
215 Jarnigan Ave
Chattanooga, TN 37405
Phone: (423) 653-3611
www.northrivergeographic.com
rjhale@northrivergeographic.com
North River Geographic Systems, Inc. is a Geographic Information Systems and Services Company located in southeast Tennessee. Although in business for just over two years, we bring over 15 years experience in the GIS/Mapping industry.

Wellar Consulting
Principal: Barry Wellar, BA, M5, PhD, MCIP, GISP
Ottawa, ON Canada
Phone: (613) 728-3483
www.wellarconsulting.com
wellarb@uottawa.ca

Wellar Consulting services include design and evaluation of education and training courses and curricula for GISTeams and GIS-Science programs; advice and workshops on the development of quantitative measures to assess information system and transport system performance; critical reviews of IS and GIS RFPs; seminars on the safety and security aspects of interdependent infrastructures; professional opinion on land use planning and zoning issues; and, expert opinion on liability for safety-related incidents involving pedestrians, cyclists, and motor vehicle operators.

For information about URISA Sponsorship, please visit: http://www.urisa.org/sponsorship or contact Wendy Nelson at URISA Headquarters.
Mark Your Calendar!

September 2, 2011
Last Day to Cast Your Vote in the 2011 URISA Election

September 13-15, 2011
GIS in Public Transportation Conference
St. Petersburg, Florida

November 1-4, 2011
GIS-Pro 2011: URISA’s 49th Annual Conference for GIS Professionals
Indianapolis, Indiana

November 16, 2011
GIS Day 2011

March 12-15, 2012
GIS/CAMA Technologies Conference
San Antonio, Texas

April 11-13, 2012
2012 CalGIS Conference
Sacramento, California

PRESIDENT
Cy Smith, GISP-State of Oregon
cy.smith@state.or.us

PRESIDENT-ELECT
Greg Babinski, GISP-King County GIS Center
greg.babinski@kingcounty.gov

IMMEDIATE PAST-PRESIDENT
Kathrine Cargo, GISP-Orleans Parish Communication District
cargo@911nola.org

SECRETARY
Twylla McDermott, GISP-City of Charlotte (NC)
tmcdermott@ci.charlotte.nc.us

TREASURER
Clare Brown, GISP-New Orleans Regional Planning Commission, New Orleans, LACbrown@norpc.org
Carl Anderson, GISP-Spatial Focus, Inc. (MD)carl.anderson@vadose.org
Tom Conry- Fairfax County (VA)Thomas.conry@fairfaxcounty.gov
David DiBiase, GISP-Penn State Universitydbiase@psu.edu
Michael W Lovett, GISP-CDM Camp Dresser & McKee, Maitland, FLlovettm@cdm.com
Nancy Obermeyer, GISP – Indiana State Universitynjobie28@kiva.net
Karen RM Stewart, GISP-ESRI Canada, Vancouver, BCKstewart@esricanada.com
Christopher Thomas – Esri (CA)cthomas@esri.com

THE GIS PROFESSIONAL
A publication of URISA – The Association for GIS Professionals.
URISA is a non-profit professional and educational association that promotes the effective and ethical use of spatial information and information technologies for the understanding and management of urban and regional systems. It is a multidisciplinary association where professionals from all parts of the spatial data community can come together and share concerns and ideas.

URISA Headquarters
701 Lee Street, Suite 680
Des Plaines, IL 60016
Phone (847) 824-6300
Fax (847) 824-6363
info@urisa.org
www.urisa.org

Submissions
Managing Editor – Wendy Nelson, Executive Director,wnelson@urisa.org
Technology Editor – Comfort Manyame, GISP,cmanyame@mselectric.com
Trends Editor – Keri Shearer, GISP,giscommunity@gmail.com

RFP Distribution

URISA members, remember that URISA will distribute your RFP/RFQ announcements to our corporate and business members at no charge.
Simply email your announcement to info@urisa.org (Subject: RFP Service) and we’ll send it right out for you!